A plot of predictions versus the time covariate is generated. Predicted values are joined by lines while sampled observations are represented by circles. If the argument components=TRUE is considered in the lcc object, single plots of each statistics are returned on differents pages.
lccPlot(obj, type, control,...)
Arguments
obj: an object inheriting from class "lcc", representing a fitted lcc model.
type: character string. If type = "lcc", the output is the LCC plot; if type = "lpc", the output is the LPC plot; and if type = "la" the output is the LA plot. Types "lpc" and "la" are available only if components = TRUE.
control: a list of control values or character strings returned by the function plotControl. Defaults to an empty list. The list may contain the following components:
shape:: draw points considering a shape parameter. Possible shape values are the numbers 0 to 25, and 32 to 127; see aes_linetype_size_shape. Default is 1.
colour:: specification for lines color. Default is "black".
size:: specification for lines size. Should be specified with a numerical value (in millimetres); see aes_linetype_size_shape. Default is 0.5.
xlab:: title for the x axis. Default is "Time".
ylab:: title for the y axis. Default is "LCC", "LPC", or "LA"
scale_y_continuous:: numeric vector of length two providing limits of the scale. Default is c(0,1).
all.plot:: viewport functions for the lcc
class. If `TRUE`, the default, returns an object created by the `viewport` function with multiple plots on a single page. If `FALSE` returns a single `ggplot` object by different pages using the `marrangeGrob` function.
...: arguments to be passed to facet_wrap function
Returns
No return value, called for side effects
Examples
data(hue)## Second degree polynomial model with random intercept, slope and## quadratic termfm1<-lcc(data = hue, subject ="Fruit", resp ="H_mean", method ="Method", time ="Time", qf =2, qr =2, components=TRUE)lccPlot(fm1, type="lcc")lccPlot(fm1, type="lpc")lccPlot(fm1, type="la")## Using themes of ggplot2 packagelccPlot(fm1, type ="lpc")+ ylim(0,1)+ geom_hline(yintercept =1, linetype ="dashed")+ scale_x_continuous(breaks = seq(1,max(hue$Time),2))+ theme_bw()+ theme(legend.position ="none", aspect.ratio =1, axis.line.x = element_line(color="black", size =0.5), axis.line.y = element_line(color="black", size =0.5), axis.title.x = element_text(size=14), axis.title.y = element_text(size=14), axis.text.x = element_text(size =14, face ="plain"), axis.text.y = element_text(size =14, face ="plain"))## Using the key (+) to constructing sophisticated graphicslccPlot(fm1, type="lcc")+ scale_y_continuous(limits=c(-1,1))+ labs(title="My title", y ="Longitudinal Concordance Correlation", x ="Time (Days)")## Runing all.plots = FALSE and saving plots as pdf## Not run:data(simulated_hue_block)attach(simulated_hue_block)fm2<-lcc(data = simulated_hue_block, subject ="Fruit", resp ="Hue", method ="Method",time ="Time", qf =2, qr =1, components =TRUE, covar = c("Block"), time_lcc = list(n=50, from=min(Time), to=max(Time)))ggsave("myplots.pdf", lccPlot(fm2, type="lcc", scales ="free"))## End(Not run)
References
Lin, L. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45, n. 1, 255-268, 1989.
Oliveira, T.P.; Hinde, J.; Zocchi S.S. Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis. Journal of Agricultural, Biological, and Environmental Statistics, v. 23, n. 2, 233–254, 2018.