lccPlot function

Plot Fitted Curves from an lcc Object.

Plot Fitted Curves from an lcc Object.

A plot of predictions versus the time covariate is generated. Predicted values are joined by lines while sampled observations are represented by circles. If the argument components=TRUE is considered in the lcc object, single plots of each statistics are returned on differents pages.

lccPlot(obj, type, control, ...)

Arguments

  • obj: an object inheriting from class "lcc", representing a fitted lcc model.

  • type: character string. If type = "lcc", the output is the LCC plot; if type = "lpc", the output is the LPC plot; and if type = "la" the output is the LA plot. Types "lpc" and "la" are available only if components = TRUE.

  • control: a list of control values or character strings returned by the function plotControl. Defaults to an empty list. The list may contain the following components:

    • shape:: draw points considering a shape parameter. Possible shape values are the numbers 0 to 25, and 32 to 127; see aes_linetype_size_shape. Default is 1.

    • colour:: specification for lines color. Default is "black".

    • size:: specification for lines size. Should be specified with a numerical value (in millimetres); see aes_linetype_size_shape. Default is 0.5.

    • xlab:: title for the x axis. Default is "Time".

    • ylab:: title for the y axis. Default is "LCC", "LPC", or "LA"

    • scale_y_continuous:: numeric vector of length two providing limits of the scale. Default is c(0,1).

    • all.plot:: viewport functions for the lcc

       class. If `TRUE`, the default, returns an object created by the `viewport` function with multiple plots on a single page. If `FALSE` returns a single `ggplot` object by different pages using the `marrangeGrob` function.
      
  • ...: arguments to be passed to facet_wrap function

Returns

No return value, called for side effects

Examples

data(hue) ## Second degree polynomial model with random intercept, slope and ## quadratic term fm1<-lcc(data = hue, subject = "Fruit", resp = "H_mean", method = "Method", time = "Time", qf = 2, qr = 2, components=TRUE) lccPlot(fm1, type="lcc") lccPlot(fm1, type="lpc") lccPlot(fm1, type="la") ## Using themes of ggplot2 package lccPlot(fm1, type = "lpc")+ ylim(0,1) + geom_hline(yintercept = 1, linetype = "dashed") + scale_x_continuous(breaks = seq(1,max(hue$Time),2))+ theme_bw() + theme(legend.position = "none", aspect.ratio = 1, axis.line.x = element_line(color="black", size = 0.5), axis.line.y = element_line(color="black", size = 0.5), axis.title.x = element_text(size=14), axis.title.y = element_text(size=14), axis.text.x = element_text(size = 14, face = "plain"), axis.text.y = element_text(size = 14, face = "plain")) ## Using the key (+) to constructing sophisticated graphics lccPlot(fm1, type="lcc") + scale_y_continuous(limits=c(-1, 1)) + labs(title="My title", y ="Longitudinal Concordance Correlation", x = "Time (Days)") ## Runing all.plots = FALSE and saving plots as pdf ## Not run: data(simulated_hue_block) attach(simulated_hue_block) fm2<-lcc(data = simulated_hue_block, subject = "Fruit", resp = "Hue", method = "Method",time = "Time", qf = 2, qr = 1, components = TRUE, covar = c("Block"), time_lcc = list(n=50, from=min(Time), to=max(Time))) ggsave("myplots.pdf", lccPlot(fm2, type="lcc", scales = "free")) ## End(Not run)

References

Lin, L. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics, 45, n. 1, 255-268, 1989.

Oliveira, T.P.; Hinde, J.; Zocchi S.S. Longitudinal Concordance Correlation Function Based on Variance Components: An Application in Fruit Color Analysis. Journal of Agricultural, Biological, and Environmental Statistics, v. 23, n. 2, 233–254, 2018.

See Also

lcc.

Author(s)

Thiago de Paula Oliveira, thiago.paula.oliveira@alumni.usp.br

  • Maintainer: Thiago de Paula Oliveira
  • License: GPL (>= 2)
  • Last published: 2022-08-25

Useful links