lgpr1.2.4 package

Longitudinal Gaussian Process Regression

add_dis_age

Easily add the disease-related age variable to a data frame

add_factor

Easily add a categorical covariate to a data frame

add_factor_crossing

Add a crossing of two factors to a data frame

adjusted_c_hat

Set the GP mean vector, taking TMM or other normalization into account

apply_scaling

Apply variable scaling

as_character

Character representations of different formula objects

create_model.covs_and_comps

Parse the covariates and model components from given data and formula

create_model.formula

Create a model formula

create_model.likelihood

Parse the response variable and its likelihood model

create_model.options

Parse the given modeling options

create_model.prior

Parse given prior

create_model

Create a model

create_plot_df

Helper function for plots

create_scaling

Create a standardizing transform

dinvgamma_stanlike

Density and quantile functions of the inverse gamma distribution

draw_pred

Draw pseudo-observations from posterior or prior predictive distributi...

example_fit

Quick way to create an example lgpfit, useful for debugging

fit_summary

Print a fit summary.

GaussianPrediction-class

An S4 class to represent analytically computed predictive distribution...

get_draws

Extract parameter draws from lgpfit or stanfit

get_pred

Extract model predictions and function posteriors

kernel

Compute a kernel matrix (covariance matrix)

KernelComputer-class

An S4 class to represent input for kernel matrix computations

lgp

Main function of the 'lgpr' package

lgpexpr-class

An S4 class to represent an lgp expression

lgpfit-class

An S4 class to represent the output of the lgp function

lgpformula-class

An S4 class to represent an lgp formula

lgpmodel-class

An S4 class to represent an additive GP model

lgpr-package

The 'lgpr' package.

lgprhs-class

An S4 class to represent the right-hand side of an lgp formula

lgpscaling-class

An S4 class to represent variable scaling

lgpsim-class

An S4 class to represent a data set simulated using the additive GP fo...

lgpterm-class

An S4 class to represent one formula term

model_summary

Print a model summary.

new_x

Create test input points for prediction

operations

Operations on formula terms and expressions

plot_api_c

Plot a generated/fit model component

plot_api_g

Plot longitudinal data and/or model fit so that each subject/group has...

plot_components

Visualize all model components

plot_data

Vizualizing longitudinal data

plot_draws

Visualize the distribution of parameter draws

plot_inputwarp

Visualize input warping function with several steepness parameter valu...

plot_invgamma

Plot the inverse gamma-distribution pdf

plot_pred

Visualizing model predictions or inferred covariate effects

plot_sim

Visualize an lgpsim object (simulated data)

ppc

Graphical posterior predictive checks

pred

Posterior predictions and function posteriors

Prediction-class

An S4 class to represent prior or posterior draws from an additive fun...

prior_pred

Prior (predictive) sampling

prior_to_num

Convert given prior to numeric format

priors

Prior definitions

read_proteomics_data

Function for reading the built-in proteomics data

relevances

Assess component relevances

s4_generics

S4 generics for lgpfit, lgpmodel, and other objects

sample_model

Fitting a model

select

Select relevant components

show

Printing formula object info using the show generic

sim.create_f

Simulate latent function components for longitudinal data analysis

sim.create_x

Create an input data frame X for simulated data

sim.create_y

Simulate noisy observations

sim.kernels

Compute all kernel matrices when simulating data

simulate_data

Generate an artificial longitudinal data set

split

Split data into training and test sets

validate

Validate S4 class objects

var_mask

Variance masking function

warp_input

Input warping function

Interpretable nonparametric modeling of longitudinal data using additive Gaussian process regression. Contains functionality for inferring covariate effects and assessing covariate relevances. Models are specified using a convenient formula syntax, and can include shared, group-specific, non-stationary, heterogeneous and temporally uncertain effects. Bayesian inference for model parameters is performed using 'Stan'. The modeling approach and methods are described in detail in Timonen et al. (2021) <doi:10.1093/bioinformatics/btab021>.

  • Maintainer: Juho Timonen
  • License: GPL (>= 3)
  • Last published: 2023-09-24