This function is made to be used in locate_trees . It implements an algorithm for tree detection based on a local maximum filter. The windows size can be fixed or variable and its shape can be square or circular. The internal algorithm works either with a raster or a point cloud. It is deeply inspired by Popescu & Wynne (2004) (see references).
ws: numeric or function. Length or diameter of the moving window used to detect the local maxima in the units of the input data (usually meters). If it is numeric a fixed window size is used. If it is a function, the function determines the size of the window at any given location on the canopy. By default function takes the height of a given pixel or point as its only argument and return the desired size of the search window when centered on that pixel/point. This can be controled with the ws_args parameter
hmin: numeric. Minimum height of a tree. Threshold below which a pixel or a point cannot be a local maxima. Default is 2.
shape: character. Shape of the moving window used to find the local maxima. Can be "square" or "circular".
ws_args: list. Named list of argument for the function ws if ws is a function.
Examples
LASfile <- system.file("extdata","MixedConifer.laz", package="lidR")las <- readLAS(LASfile, select ="xyzi", filter ="-inside 481250 3812980 481300 3813050")# =================# point-cloud-based# =================# 5x5 m fixed window sizettops <- locate_trees(las, lmf(5))#plot(las) |> add_treetops3d(ttops)# variable windows sizef <-function(x){ x *0.07+3}ttops <- locate_trees(las, lmf(f))#plot(las) |> add_treetops3d(ttops)# Very custom variable windows sizef <-function(x, y, z){ x *0.07+ y *0.01+ z}ws_args <- list(x ="Z", y ="Intensity", z =3)ttops <- locate_trees(las, lmf(f, ws_args = ws_args))# ============# raster-based# ============chm <- rasterize_canopy(las, res =1, p2r(0.15), pkg ="terra")ttops <- locate_trees(chm, lmf(5))plot(chm, col = height.colors(30))plot(sf::st_geometry(ttops), add =TRUE, col ="black", cex =0.5, pch =3)# variable window sizef <-function(x){ x *0.07+3}ttops <- locate_trees(chm, lmf(f))plot(chm, col = height.colors(30))plot(sf::st_geometry(ttops), add =TRUE, col ="black", cex =0.5, pch =3)
References
Popescu, Sorin & Wynne, Randolph. (2004). Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height. Photogrammetric Engineering and Remote Sensing. 70. 589-604. 10.14358/PERS.70.5.589.
See Also
Other individual tree detection algorithms: itd_manual