Coercing an lme4::lmer model-object (of class 'lmerMod') to a model-object of class 'lmerModLmerTest' involves computing the covariance matrix of the variance parameters and the gradient (Jacobian) of cov(beta) with respect to the variance parameters.
as_lmerModLmerTest(model, tol =1e-08)
Arguments
model: and lmer model-object (of class 'lmerMod') -- the result of a call to lme4::lmer()
tol: tolerance for determining of eigenvalues are negative, zero or positive
Returns
an object of class 'lmerModLmerTest' which sets the following slots: - vcov_varpar: the asymptotic covariance matrix of the variance parameters (theta, sigma).
Jac_list: list of Jacobian matrices; gradients of vcov(beta) with respect to the variance parameters.
vcov_beta: the asymptotic covariance matrix of the fixed-effect regression parameters (beta; vcov(beta)).
sigma: the residual standard deviation.
Examples
m <- lme4::lmer(Reaction ~ Days +(Days | Subject), sleepstudy)bm <- as_lmerModLmerTest(m)slotNames(bm)