plsdares is used to store and visualize results of applying a PLS-DA model to a new data.
plsdares(plsres, cres)
Arguments
plsres: PLS results for the data.
cres: Classification results for the data.
Returns
Returns an object of plsdares class with fields, inherited from classres
and plsres.
Details
Do not use plsdares manually, the object is created automatically when one applies a PLS-DA model to a new data set, e.g. when calibrate and validate a PLS-DA model (all calibration and validation results in PLS-DA model are stored as objects of plsdares class) or use function predict.plsda.
The object gives access to all PLS-DA results as well as to the plotting methods for visualisation of the results. The plsidares class also inherits all properties and methods of classres and plsres classes.
If no reference values provided, classification statistics will not be calculated and performance plots will not be available.
Examples
### Examples for PLS-DA results classlibrary(mdatools)## 1. Make a PLS-DA model with full cross-validation, get## calibration results and show overview# make a calibration set from iris data (3 classes)# use names of classes as class vectorx.cal = iris[seq(1, nrow(iris),2),1:4]c.cal = iris[seq(1, nrow(iris),2),5]model = plsda(x.cal, c.cal, ncomp =3, cv =1, info ='IRIS data example')model = selectCompNum(model,1)res = model$calres
# show summary and basic plots for calibration resultssummary(res)plot(res)## 2. Apply the calibrated PLS-DA model to a new dataset# make a new datax.new = iris[seq(2, nrow(iris),2),1:4]c.new = iris[seq(2, nrow(iris),2),5]res = predict(model, x.new, c.new)summary(res)plot(res)## 3. Show performance plots for the resultspar(mfrow = c(2,2))plotSpecificity(res)plotSensitivity(res)plotMisclassified(res)plotMisclassified(res, nc =2)par(mfrow = c(1,1))## 3. Show both class and y values predictionspar(mfrow = c(2,2))plotPredictions(res)plotPredictions(res, ncomp =2, nc =2)plotPredictions(structure(res, class ="regres"))plotPredictions(structure(res, class ="regres"), ncomp =2, ny =2)par(mfrow = c(1,1))## 4. All plots from ordinary PLS results can be used, e.g.:par(mfrow = c(2,2))plotXYScores(res)plotYVariance(res, type ='h')plotXVariance(res, type ='h')plotXResiduals(res)par(mfrow = c(1,1))
See Also
Methods for plsda objects:
print.plsda
shows information about the object.
summary.plsda
shows statistics for results of classification.
plot.plsda
shows plots for overview of the results.
Methods, inherited from classres class:
showPredictions.classres
show table with predicted values.
plotPredictions.classres
makes plot with predicted values.
plotSensitivity.classres
makes plot with sensitivity vs. components values.
plotSpecificity.classres
makes plot with specificity vs. components values.
plotPerformance.classres
makes plot with both specificity and sensitivity values.
Methods for plsres objects:
print
prints information about a plsres object.
summary.plsres
shows performance statistics for the results.
plot.plsres
shows plot overview of the results.
plotXScores.plsres
shows scores plot for x decomposition.
plotXYScores.plsres
shows scores plot for x and y decomposition.
plotXVariance.plsres
shows explained variance plot for x decomposition.
plotYVariance.plsres
shows explained variance plot for y decomposition.
plotXCumVariance.plsres
shows cumulative explained variance plot for y decomposition.
plotYCumVariance.plsres
shows cumulative explained variance plot for y decomposition.
plotXResiduals.plsres
shows T2 vs. Q plot for x decomposition.
plotYResiduals.plsres
shows residuals plot for y values.
Methods inherited from regres class (parent class for plsres):
plotPredictions.regres
shows predicted vs. measured plot.
plotRMSE.regres
shows RMSE plot.
See also plsda - a class for PLS-DA models, predict.plsda applying
PLS-DA model for a new dataset.