mdatools0.14.2 package

Multivariate Data Analysis for Chemometrics

mcr

General class for Multivariate Curve Resolution model

plotCorr.randtest

Correlation plot for randomization test results

plotCorr

Correlation plot

plotCumVariance.ldecomp

Cumulative explained variance plot

plotCumVariance.mcr

Show plot with cumulative explained variance

plotCumVariance.pca

Cumulative explained variance plot for PCA model

plotCumVariance

Variance plot

plotDensity

Show plot series as density plot (using hex binning)

plotDiscriminationPower

Discrimination power plot

plotVariance.ldecomp

Explained variance plot

plotVariance.mcr

Show plot with explained variance

pls.cal

PLS model calibration

pls.getLimitsCoordinates

Compute coordinates of lines or curves with critical limits

pls.getpredictions

Compute predictions for response values

pls.getxdecomp

Compute object with decomposition of x-values

pls.getxscores

Compute matrix with X-scores

ddrobust.param

Calculates critical limits for distance values using Data Driven robus...

ellipse

Create ellipse on the current plot

employ.constraint

Applies constraint to a dataset

employ.prep

Applies a list with preprocessing methods to a dataset

fprintf

Imitation of fprinf() function

getCalibrationData.pca

Returns matrix with original calibration data

getCalibrationData

Calibration data

getCalibrationData.simcam

Get calibration data

getConfidenceEllipse

Compute confidence ellipse for a set of points

getConfusionMatrix.classres

Confusion matrix for classification results

getConfusionMatrix

Confusion matrix for classification results

getConvexHull

Compute coordinates of a closed convex hull for data points

getDataLabels

Create a vector with labels for plot series

getImplementedConstraints

Shows a list with implemented constraints

getImplementedPrepMethods

Shows a list with implemented preprocessing methods

getLabelsAsIndices

Create labels as column or row indices

getLabelsAsValues

Create labels from data values

getMainTitle

Get main title

getPlotColors

Define colors for plot series

getProbabilities.pca

Probabilities for residual distances

getProbabilities

Get class belonging probability

getProbabilities.simca

Probabilities of class belonging for PCA/SIMCA results

getPureVariables

Identifies pure variables

getRegcoeffs

Get regression coefficients

getRegcoeffs.regmodel

Regression coefficients for PLS model'

getRes

Return list with valid results

getSelectedComponents

Get selected components

getSelectivityRatio.pls

Selectivity ratio for PLS model

getSelectivityRatio

Selectivity ratio

getVariance.mcr

Compute explained variance for MCR case

mdaplot.prepareColors

Prepare colors based on palette and opacity value

mdaplot

Plotting function for a single set of objects

mdaplot.showColorbar

Plot colorbar

mdaplot.showLines

Plot lines

mdaplotg.getLegend

Create and return vector with legend values

mdaplotg.getXLim

Compute x-axis limits for mdaplotg

mdaplotg.getYLim

Compute y-axis limits for mdaplotg

mdaplotg.prepareData

Prepare data for mdaplotg

mdaplotg.processParam

Check mdaplotg parameters and replicate them if necessary

mdaplotg

Plotting function for several plot series

mdaplotg.showLegend

Show legend for mdaplotg

mdaplotyy

Create line plot with double y-axis

getVIPScores.pls

VIP scores for PLS model

getVIPScores

VIP scores

plot.randtest

Plot for randomization test results

plot.regcoeffs

Regression coefficients plot

plot.regres

Plot method for regression results

plot.simca

Model overview plot for SIMCA

plot.simcam

Model overview plot for SIMCAM

plot.simcamres

Model overview plot for SIMCAM results

plotLines

Show plot series as set of lines

plotLoadings.pca

Loadings plot for PCA model

plotLoadings

Loadings plot

plotMisclassified.classmodel

Misclassified ratio plot for classification model

plotMisclassified.classres

Misclassified ratio plot for classification results

plotMisclassified

Misclassification ratio plot

plotModelDistance

Model distance plot

plotSelection.ipls

iPLS performance plot

plotSelection

Selected intervals plot

plotPredictions

Predictions plot

plotPredictions.regmodel

Predictions plot for regression model

plotPredictions.regres

Predictions plot for regression results

plotPredictions.simcam

Predictions plot for SIMCAM model

plotPredictions.simcamres

Prediction plot for SIMCAM results

plotProbabilities.classres

Plot for class belonging probability

plotProbabilities

Plot for class belonging probability

plotPurity.mcrpure

Purity values plot

plotPurity

Plot purity values

plotPuritySpectra.mcrpure

Purity spectra plot

plotPuritySpectra

Plot purity spectra

plotQDoF

Degrees of freedom plot for orthogonal distance (Nh)

plotRegcoeffs

Regression coefficients plot

plotRegcoeffs.regmodel

Regression coefficient plot for regression model

plotRegressionLine

Add regression line for data points

plotResiduals.ldecomp

Residual distance plot

plotResiduals.pca

Residuals distance plot for PCA model

plotResiduals

Residuals plot

plotResiduals.regres

Residuals plot for regression results

plotRMSE.ipls

RMSE development plot

plotRMSE

RMSE plot

plotRMSE.regmodel

RMSE plot for regression model

plotRMSE.regres

RMSE plot for regression results

plotRMSERatio

Plot for ratio RMSEC/RMSECV vs RMSECV

plotRMSERatio.regmodel

RMSECV/RMSEC ratio plot for regression model

plotScatter

Show plot series as set of points

plotScores.ldecomp

Scores plot

plotScores.pca

Scores plot for PCA model

plotScores

Scores plot

plotSelectivityRatio.pls

Selectivity ratio plot for PLS model

plotSelectivityRatio

Selectivity ratio plot

plotSensitivity.classmodel

Sensitivity plot for classification model

plotSensitivity.classres

Sensitivity plot for classification results

plotSensitivity

Sensitivity plot

plotseries

Create plot series object based on data, plot type and parameters

plotSpecificity.classmodel

Specificity plot for classification model

plotSpecificity.classres

Specificity plot for classification results

plotSpecificity

Specificity plot

plotSpectra.mcr

Show plot with resolved spectra

plotSpectra

Plot resolved spectra

plotT2DoF

Degrees of freedom plot for score distance (Nh)

plotXLoadings

X loadings plot

plotXResiduals.pls

Residual distance plot for decomposition of X data

plotYVariance

Y variance plot

predict.pca

PCA predictions

predict.pls

PLS predictions

predict.plsda

PLS-DA predictions

predict.simca

SIMCA predictions

predict.simcam

SIMCA multiple classes predictions

prep.ref2km

Kubelka-Munk transformation

prep.savgol

Savytzky-Golay filter

prep.snv

Standard Normal Variate transformation

prep.transform

Transformation

prep.varsel

Variable selection

preparePlotData

Take dataset and prepare them for plot

prepCalData

Prepares calibration data

print.classres

Print information about classification result object

print.ipls

Print method for iPLS

print.ldecomp

Print method for linear decomposition

print.mcrals

Print method for mcrpure object

print.mcrpure

Print method for mcrpure object

print.pca

Print method for PCA model object

print.pcares

Print method for PCA results object

print.pls

Print method for PLS model object

print.plsda

Print method for PLS-DA model object

print.plsdares

Print method for PLS-DA results object

print.plsres

print method for PLS results object

print.randtest

Print method for randtest object

print.regcoeffs

print method for regression coefficients class

print.regmodel

Print method for PLS model object

print.regres

print method for regression results object

print.simca

Print method for SIMCA model object

print.simcam

Print method for SIMCAM model object

print.simcamres

Print method for SIMCAM results object

print.simcares

Print method for SIMCA results object

randtest

Randomization test for PLS regression

regcoeffs.getStats

Distribution statistics for regression coeffificents

selratio

Selectivity ratio calculation

setDistanceLimits.pca

Compute and set statistical limits for Q and T2 residual distances.

summary.pls

Summary method for PLS model object

summary.plsda

Summary method for PLS-DA model object

summary.plsdares

Summary method for PLS-DA results object

summary.plsres

summary method for PLS results object

summary.randtest

Summary method for randtest object

summary.regcoeffs

Summary method for regcoeffs object

summary.regmodel

Summary method for regression model object

summary.regres

summary method for regression results object

summary.simca

Summary method for SIMCA model object

summary.simcam

Summary method for SIMCAM model object

summary.simcamres

Summary method for SIMCAM results object

summary.simcares

Summary method for SIMCA results object

unmix.mcrpure

Unmix spectral data using pure variables estimated before

hotelling.crit

Calculate critical limits for distance values using Hotelling T2 distr...

hotelling.prob

Calculate probabilities for distance values and given parameters using...

imshow

show image data as an image

ipls.backward

Runs the backward iPLS algorithm

ipls.forward

Runs the forward iPLS algorithm

ipls

Variable selection with interval PLS

jm.crit

Calculate critical limits for distance values using Jackson-Mudholkar ...

jm.prob

Calculate probabilities for distance values and given parameters using...

mda.inclcols

Include/unhide the excluded columns

mda.inclrows

include/unhide the excluded rows

mda.purge

Removes excluded (hidden) rows and colmns from data

mda.purgeCols

Removes excluded (hidden) colmns from data

mda.purgeRows

Removes excluded (hidden) rows from data

mda.rbind

A wrapper for rbind() method with proper set of attributes

mda.setattr

Set data attributes

categorize.pca

Categorize PCA results based on orthogonal and score distances.

confint.regcoeffs

Confidence intervals for regression coefficients

as.matrix.classres

as.matrix method for classification results

as.matrix.ldecomp

as.matrix method for ldecomp object

as.matrix.plsdares

as.matrix method for PLS-DA results

as.matrix.plsres

as.matrix method for PLS results

as.matrix.regcoeffs

as.matrix method for regression coefficients class

as.matrix.regres

as.matrix method for regression results

as.matrix.simcamres

as.matrix method for SIMCAM results

as.matrix.simcares

as.matrix method for SIMCA classification results

capitalize

Capitalize text or vector with text values

ddmoments.param

Calculates critical limits for distance values using Data Driven momen...

mda.setimbg

Remove background pixels from image data

categorize.pls

Categorize data rows based on PLS results and critical limits for tota...

categorize

Categorize PCA results

chisq.crit

Calculates critical limits for distance values using Chi-square distri...

chisq.prob

Calculate probabilities for distance values using Chi-square distribut...

classify.plsda

PLS-DA classification

classify.simca

SIMCA classification

classmodel.processRefValues

Check reference class values and convert it to a factor if necessary

classres.getPerformance

Calculation of classification performance parameters

classres

Results of classification

mda.show

Wrapper for show() method

constraint

Class for MCR-ALS constraint

constraintAngle

Method for angle constraint

constraintClosure

Method for closure constraint

constraintNonNegativity

Method for non-negativity constraint

constraintNorm

Method for normalization constraint

constraints.list

Shows information about all implemented constraints

constraintUnimod

Method for unimodality constraint

crossval.getParams

Define parameters based on 'cv' value

crossval

Generate sequence of indices for cross-validation

crossval.regmodel

Cross-validation of a regression model

crossval.simca

Cross-validation of a SIMCA model

crossval.str

String with description of cross-validation method

dd.crit

Calculates critical limits for distance values using Data Driven momen...

ldecomp.getDistances

Compute score and residual distances

ldecomp.getLimitsCoordinates

Compute coordinates of lines or curves with critical limits

ldecomp.getLimParams

Compute parameters for critical limits based on calibration results

ldecomp.getQLimits

Compute critical limits for orthogonal distances (Q)

ldecomp.getT2Limits

Compute critical limits for score distances (T2)

ldecomp.getVariances

Compute explained variance

ldecomp.plotResiduals

Residuals distance plot for a set of ldecomp objects

ldecomp

Class for storing and visualising linear decomposition of dataset (X =...

mcrals.cal

Identifies pure variables

mcrals.fcnnls

Fast combinatorial non-negative least squares

mcrals.nnls

Non-negative least squares

mcrals.ols

Ordinary least squares

mcrals

Multivariate curve resolution using Alternating Least Squares

mcrpure

Multivariate curve resolution based on pure variables

mda.cbind

A wrapper for cbind() method with proper set of attributes

mda.data2im

Convert data matrix to an image

mda.df2mat

Convert data frame to a matrix

mda.exclcols

Exclude/hide columns in a dataset

mda.exclrows

Exclude/hide rows in a dataset

mda.getattr

Get data attributes

mda.getexclind

Get indices of excluded rows or columns

mda.im2data

Convert image to data matrix

mda.subset

A wrapper for subset() method with proper set of attributed

mda.t

A wrapper for t() method with proper set of attributes

mdaplot.areColors

Check color values

mdaplot.formatValues

Format vector with numeric values

mdaplot.getColors

Color values for plot elements

mdaplot.getXAxisLim

Calculate limits for x-axis.

mdaplot.getXTickLabels

Prepare xticklabels for plot

mdaplot.getXTicks

Prepare xticks for plot

mdaplot.getYAxisLim

Calculate limits for y-axis.

mdaplot.getYTickLabels

Prepare yticklabels for plot

mdaplot.getYTicks

Prepare yticks for plot

mdaplot.plotAxes

Create axes plane

mdatools

Package for Multivariate Data Analysis (Chemometrics)

pca.cal

PCA model calibration

pca.getB

Low-dimensional approximation of data matrix X

pca.mvreplace

Replace missing values in data

pca.nipals

NIPALS based PCA algorithm

pca

Principal Component Analysis

pca.run

Runs one of the selected PCA methods

pca.svd

Singular Values Decomposition based PCA algorithm

plotBars

Show plot series as bars

pcares

Results of PCA decomposition

pinv

Pseudo-inverse matrix

plot.classres

Plot function for classification results

plot.ipls

Overview plot for iPLS results

plot.mcr

Plot summary for MCR model

plot.pca

Model overview plot for PCA

plot.pcares

Plot method for PCA results object

plot.pls

Model overview plot for PLS

plot.plsda

Model overview plot for PLS-DA

plot.plsdares

Overview plot for PLS-DA results

plot.plsres

Overview plot for PLS results

plotBiplot.pca

PCA biplot

plotBiplot

Biplot

plotConfidenceEllipse

Add confidence ellipse for groups of points on scatter plot

plotContributions.mcr

Show plot with resolved contributions

plotContributions

Plot resolved contributions

plotConvexHull

Add convex hull for groups of points on scatter plot

plotCooman

Cooman's plot

plotCooman.simcam

Cooman's plot for SIMCAM model

plotCooman.simcamres

Cooman's plot for SIMCAM results

plotDiscriminationPower.simcam

Discrimination power plot for SIMCAM model

plotDistDoF

Degrees of freedom plot for both distances

plotErrorbars

Show plot series as error bars

plotExtreme.pca

Extreme plot

plotExtreme

Shows extreme plot for SIMCA model

plotHist.randtest

Histogram plot for randomization test results

plotHist

Statistic histogram

plotHotellingEllipse

Hotelling ellipse

plotModelDistance.simcam

Model distance plot for SIMCAM model

plotModellingPower

Modelling power plot

plotPerformance.classmodel

Performance plot for classification model

plotPerformance.classres

Performance plot for classification results

plotPerformance

Classification performance plot

plotPointsShape

Add confidence ellipse or convex hull for group of points

plotPredictions.classmodel

Predictions plot for classification model

plotPredictions.classres

Prediction plot for classification results

plotVariance.pca

Explained variance plot for PCA model

plotVariance.pls

Variance plot for PLS

plotVariance.plsres

Explained X variance plot for PLS results

plotVariance

Variance plot

plotVIPScores.pls

VIP scores plot for PLS model

plotVIPScores

VIP scores plot

plotWeights.pls

X loadings plot for PLS

plotWeights

Plot for PLS weights

plotXCumVariance.pls

Cumulative explained X variance plot for PLS

plotXCumVariance.plsres

Explained cumulative X variance plot for PLS results

plotXCumVariance

X cumulative variance plot

plotXLoadings.pls

X loadings plot for PLS

plotXResiduals.plsres

X residuals plot for PLS results

plotXResiduals

X residuals plot

plotXScores.pls

X scores plot for PLS

plotXScores.plsres

X scores plot for PLS results

plotXScores

X scores plot

plotXVariance.pls

Explained X variance plot for PLS

plotXVariance.plsres

Explained X variance plot for PLS results

plotXVariance

X variance plot

plotXYLoadings.pls

XY loadings plot for PLS

plotXYLoadings

X loadings plot

plotXYResiduals.pls

Residual XY-distance plot

plotXYResiduals.plsres

Residual distance plot

plotXYResiduals

Plot for XY-residuals

plotXYScores.pls

XY scores plot for PLS

plotXYScores.plsres

XY scores plot for PLS results

plotXYScores

XY scores plot

plotYCumVariance.pls

Cumulative explained Y variance plot for PLS

plotYCumVariance.plsres

Explained cumulative Y variance plot for PLS results

plotYCumVariance

Y cumulative variance plot

plotYResiduals.plsres

Y residuals plot for PLS results

plotYResiduals

Y residuals plot

plotYResiduals.regmodel

Y residuals plot for regression model

plotYVariance.pls

Explained Y variance plot for PLS

plotYVariance.plsres

Explained Y variance plot for PLS results

pls.getydecomp

Compute object with decomposition of y-values

pls.getyscores

Compute and orthogonalize matrix with Y-scores

pls.getZLimits

Compute critical limits for orthogonal distances (Q)

pls

Partial Least Squares regression

pls.run

Runs selected PLS algorithm

pls.simpls

SIMPLS algorithm

pls.simplsold

SIMPLS algorithm (old implementation)

plsda

Partial Least Squares Discriminant Analysis

plsdares

PLS-DA results

plsres

PLS results

predict.mcrals

MCR ALS predictions

predict.mcrpure

MCR predictions

prep.alsbasecorr

Baseline correction using asymetric least squares

prep.autoscale

Autoscale values

prep.generic

Generic function for preprocessing

prep.list

Shows information about all implemented preprocessing methods.

prep.msc

Multiplicative Scatter Correction transformation

prep.norm

Normalization

prep

Class for preprocessing object

regcoeffs

Regression coefficients

regres.bias

Prediction bias

regres.err

Error of prediction

regres.r2

Determination coefficient

regres

Regression results

regres.rmse

RMSE

regres.slope

Slope

regress.addattrs

Add names and attributes to matrix with statistics

repmat

Replicate matric x

selectCompNum.pca

Select optimal number of components for PCA model

selectCompNum.pls

Select optimal number of components for PLS model

selectCompNum

Select optimal number of components for a model

setDistanceLimits.pls

Compute and set statistical limits for residual distances.

setDistanceLimits

Set residual distance limits

showDistanceLimits

Show residual distance limits

showLabels

Show labels on plot

showPredictions.classres

Show predicted class values

showPredictions

Predictions

simca

SIMCA one-class classification

simcam.getPerformanceStats

Performance statistics for SIMCAM model

simcam

SIMCA multiclass classification

vipscores

VIP scores for PLS model

simcamres

Results of SIMCA multiclass classification

simcares

Results of SIMCA one-class classification

splitExcludedData

Split the excluded part of data

splitPlotData

Split dataset to x and y values depending on plot type

summary.classres

Summary statistics about classification result object

summary.ipls

Summary for iPLS results

summary.ldecomp

Summary statistics for linear decomposition

summary.mcrals

Summary method for mcrals object

summary.mcrpure

Summary method for mcrpure object

summary.pca

Summary method for PCA model object

summary.pcares

Summary method for PCA results object

Projection based methods for preprocessing, exploring and analysis of multivariate data used in chemometrics. S. Kucheryavskiy (2020) <doi:10.1016/j.chemolab.2020.103937>.

  • Maintainer: Sergey Kucheryavskiy
  • License: MIT + file LICENSE
  • Last published: 2024-08-19