@description simcares is used to store results for SIMCA one-class classification.
simcares(class.res, pca.res =NULL)
Arguments
class.res: results of classification (class classres).
pca.res: results of PCA decomposition of data (class pcares).
Returns
Returns an object (list) of class simcares with the same fields as pcares
plus extra fields, inherited from classres: - c.pred: predicted class values (+1 or -1).
c.ref: reference (true) class values if provided.
The following fields are available only if reference values were provided. - tp: number of true positives.
fp: nmber of false positives.
fn: number of false negatives.
specificity: specificity of predictions.
sensitivity: sensitivity of predictions.
Details
Class simcares inherits all properties and methods of class pcares, and has additional properties and functions for representing of classification results, inherited from class classres.
There is no need to create a simcares object manually, it is created automatically when build a SIMCA model (see simca) or apply the model to a new data (see predict.simca). The object can be used to show summary and plots for the results.
Examples
## make a SIMCA model for Iris setosa class and show results for calibration setlibrary(mdatools)data = iris[,1:4]class = iris[,5]# take first 30 objects of setosa as calibration setse = data[1:30,]# make SIMCA model and apply to test setmodel = simca(se,'Se')model = selectCompNum(model,1)# show infromation and summaryprint(model$calres)summary(model$calres)# show plotslayout(matrix(c(1,1,2,3),2,2, byrow =TRUE))plotPredictions(model$calres, show.labels =TRUE)plotResiduals(model$calres, show.labels =TRUE)plotPerformance(model$calres, show.labels =TRUE, legend.position ='bottomright')layout(1,1,1)# show predictions tableshowPredictions(model$calres)