simcares function

Results of SIMCA one-class classification

Results of SIMCA one-class classification

@description simcares is used to store results for SIMCA one-class classification.

simcares(class.res, pca.res = NULL)

Arguments

  • class.res: results of classification (class classres).
  • pca.res: results of PCA decomposition of data (class pcares).

Returns

Returns an object (list) of class simcares with the same fields as pcares

plus extra fields, inherited from classres: - c.pred: predicted class values (+1 or -1).

  • c.ref: reference (true) class values if provided.

The following fields are available only if reference values were provided. - tp: number of true positives.

  • fp: nmber of false positives.

  • fn: number of false negatives.

  • specificity: specificity of predictions.

  • sensitivity: sensitivity of predictions.

Details

Class simcares inherits all properties and methods of class pcares, and has additional properties and functions for representing of classification results, inherited from class classres.

There is no need to create a simcares object manually, it is created automatically when build a SIMCA model (see simca) or apply the model to a new data (see predict.simca). The object can be used to show summary and plots for the results.

Examples

## make a SIMCA model for Iris setosa class and show results for calibration set library(mdatools) data = iris[, 1:4] class = iris[, 5] # take first 30 objects of setosa as calibration set se = data[1:30, ] # make SIMCA model and apply to test set model = simca(se, 'Se') model = selectCompNum(model, 1) # show infromation and summary print(model$calres) summary(model$calres) # show plots layout(matrix(c(1,1,2,3), 2, 2, byrow = TRUE)) plotPredictions(model$calres, show.labels = TRUE) plotResiduals(model$calres, show.labels = TRUE) plotPerformance(model$calres, show.labels = TRUE, legend.position = 'bottomright') layout(1, 1, 1) # show predictions table showPredictions(model$calres)

See Also

Methods for simcares objects:

print.simcaresshows information about the object.
summary.simcaresshows statistics for results of classification.

Methods, inherited from classres class:

showPredictions.classresshow table with predicted values.
plotPredictions.classrespredicted classes plot.
plotSensitivity.classressensitivity plot.
plotSpecificity.classresspecificity plot.
plotPerformance.classresperformance plot.

Methods, inherited from ldecomp class:

plotResiduals.ldecompmakes Q2 vs. T2 residuals plot.
plotScores.ldecompmakes scores plot.
plotVariance.ldecompmakes explained variance plot.
plotCumVariance.ldecompmakes cumulative explained variance plot.

Check also simca and pcares.

  • Maintainer: Sergey Kucheryavskiy
  • License: MIT + file LICENSE
  • Last published: 2024-08-19