Plot the prior and posterior distribution of a meta-analysis model
Plot the prior and posterior distribution of a meta-analysis model
Function to generate plots for the prior and posterior distribution of a Bayesian meta-analysis.
## S3 method for class 'valmeta'dplot(x, par, distr_type, plot_type ="dens",...)
Arguments
x: An object of class "valmeta"
par: Character string to specify for which parameter a plot should be generated. Options are "mu"
(mean of the random effects model) and "tau" (standard deviation of the random effects model).
distr_type: Character string to specify whether the prior distribution ("prior") or posterior distribution ("posterior") should be displayed.
plot_type: Character string to specify whether a density plot ("dens") or histogram ("hist") should be displayed.
``: Additional arguments which are currently not used
Returns
A ggplot object.
An object of class ggplot
Examples
## Not run:data(EuroSCORE)# Meta-analysis of the concordance statisticfit <- valmeta(cstat=c.index, cstat.se=se.c.index, cstat.cilb=c.index.95CIl, cstat.ciub=c.index.95CIu, N=n, O=n.events, data=EuroSCORE, method="BAYES", slab=Study)dplot(fit)dplot(fit, distr_type ="posterior")dplot(fit, par ="tau", distr_type ="prior")# Meta-analysis of the O:E ratioEuroSCORE.new <- EuroSCORE
EuroSCORE.new$n[c(1,2,5,10,20)]<-NApars <- list(hp.tau.dist="dhalft",# Prior for the between-study standard deviation hp.tau.sigma=1.5,# Standard deviation for 'hp.tau.dist' hp.tau.df=3,# Degrees of freedom for 'hp.tau.dist' hp.tau.max=10)# Maximum value for the between-study standard deviationfit2 <- valmeta(measure="OE", O=n.events, E=e.events, N=n, data=EuroSCORE.new, method="BAYES", slab=Study, pars=pars)dplot(fit2, plot_type ="hist")## End(Not run)