RFSI & STRK Interpolation for Meteo and Environmental Variables
Accuracy metrics calculation
Nested k-fold cross-validation for Random Forest Spatial Interpolation...
k-fold cross-validation for spatio-temporal regression kriging
Prepare data
Get lon/lat coordinates for a specific location name.
Get daily, monthly, or annual; aggregated or long-term means meteorolo...
Create an object of STFDF-class class from two data frames (observatio...
Finds n nearest observations from given locations.
Finds n nearest observations from given locations for soil mapping.
Random Forest Spatial Interpolation (RFSI) prediction
Spatio-temporal regression kriging prediction
Close gaps of a grid or raster Layer data
Disaggregation in the time dimension through the use of splines for ea...
Random Forest Spatial Interpolation (RFSI) model
Find point pairs with equal spatial coordinates from STFDF-class objec...
Calculate geometrical temperature trend
Calculate geometrical temperature trend
Tiling raster or Spatial-class Grid or Pixels object
Tuning of Random Forest Spatial Interpolation (RFSI) model
Random Forest Spatial Interpolation (RFSI, Sekulić et al. (2020) <doi:10.3390/rs12101687>) and spatio-temporal geostatistical (spatio-temporal regression Kriging (STRK)) interpolation for meteorological (Kilibarda et al. (2014) <doi:10.1002/2013JD020803>, Sekulić et al. (2020) <doi:10.1007/s00704-019-03077-3>) and other environmental variables. Contains global spatio-temporal models calculated using publicly available data.
Useful links