data.prepare function

Prepare data

Prepare data

Function for data preparation for RFSI and STRK functions. It transforms data to a data.frame.

data.prepare(data, data.staid.x.y.z=NULL, obs.col=NULL, s.crs=NA )

Arguments

  • data: sf-class , sftime-class , SpatVector-class , SpatRaster-class or data.frame ; Contains target variable (observations) and covariates. If data.frame object, it should have next columns: station ID (staid), longitude (x), latitude (y), 3rd component - time, depth, ... (z) of the observation, and observation value (obs).
  • data.staid.x.y.z: numeric or character vector; Positions or names of the station ID (staid), longitude (x), latitude (y) and 3rd component (z) columns in data.frame object (e.g. c(1,2,3,4)). If data is sf-class , sftime-class , or SpatVector-class object, data.staid.x.y.z is used to point staid and z position. Set z position to NA (e.g. c(1,2,3,NA)) or ommit it (e.g. c(1,2,3)) for spatial interpolation. Default is NULL.
  • obs.col: numeric or character; Column name or number showing position of the observation column in the data. Default is 1.
  • s.crs: st_crs or crs ; Source CRS of data. If data contains crs, s.crs will not be used. Default is NA.

Returns

A list with the following elements: - data.df: A data.frame obtained from data.

  • data.staid.x.y.z: Positions of the station ID (staid), longitude (x), latitude (y) and 3rd component (z) columns in data.frame object (e.g. c(1,2,3,4)).

  • s.crs: Source CRS of data.

  • obs.col: Column number showing position of the observation column in the data.

Author(s)

Aleksandar Sekulic asekulic@grf.bg.ac.rs

References

Sekulić, A., Kilibarda, M., Heuvelink, G. B., Nikolić, M. & Bajat, B. Random Forest Spatial Interpolation. Remote. Sens. 12, 1687, https://doi.org/10.3390/rs12101687 (2020).

See Also

near.obs

rfsi

tune.rfsi

cv.rfsi

Examples

library(sf) library(meteo) library(sp) # prepare data demo(meuse, echo=FALSE) meuse <- meuse[complete.cases(meuse@data),] data = st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant") data.df <- data.prepare(data, obs.col="zinc") str(data.df)