cor_est function

Calculates the correlation coefficient

Calculates the correlation coefficient

cor_est Calculates the correlation coefficient and standard error to be used in function with.miceafter.

cor_est(y, x, data, method = "pearson", se_method = "normal")

Arguments

  • y: name of numeric vector variable.
  • x: name of numeric vector variable.
  • data: An objects of class milist, created by df2milist, list2milist or mids2milist.
  • method: a character string indicating which correlation coefficient is used for the test. One of "pearson" (default), "kendall", or "spearman".
  • se_method: Method to calculate standard error. See details.

Returns

The correlation coefficient, standard error and complete data degrees of freedom (dfcom).

Details

The basic method to calculate the standard error is by:

se=(1n3) se = \sqrt(\frac{1}{n-3})

For the Spearman correlation coefficients se_method "fieller" is calculated as:

se=(1.06n3) se = \sqrt(\frac{1.06}{n-3})

For the Kendall correlation coefficients se_method "fieller" is calculated as:

se=(0.437n4) se = \sqrt(\frac{0.437}{n-4})

Examples

imp_dat <- df2milist(lbpmilr, impvar="Impnr") ra <- with(imp_dat, expr=cor_est(y=BMI, x=Age))

See Also

with.milist, pool_cor

Author(s)

Martijn Heymans, 2022

  • Maintainer: Martijn Heymans
  • License: GPL (>= 2)
  • Last published: 2022-10-02