pool_scalar_RR function

Rubin's Rules for scalar estimates

Rubin's Rules for scalar estimates

pool_scalar_RR Applies Rubin's pooling Rules for scalar estimates

pool_scalar_RR( est, se, logit_trans = FALSE, conf.level = 0.95, statistic = FALSE, dfcom = NULL, df_small = TRUE, approxim = "tdistr" )

Arguments

  • est: a numerical vector of parameter estimates.
  • se: a numerical vector of standard error estimates.
  • logit_trans: If TRUE logit transformation of parameter values is applied before pooling, if FALSE (default), pooling is done on the original parameter scale.
  • conf.level: Confidence level of the confidence intervals.
  • statistic: if TRUE the test statistic and confidence interval are provided, if FALSE (default) these are not shown.
  • dfcom: The complete data analysis degrees of freedom.
  • df_small: if TRUE (default) the (Barnard & Rubin) small sample correction for the degrees of freedom is applied, if FALSE the old number of degrees of freedom is calculated.
  • approxim: if "tdistr" a t-distribution is used (default), if "zdistr" a z-distribution is used to derive a p-value according to the test statistic.

Returns

A list object from which the following objects are extracted:

  • pool_est the pooled parameter value.
  • pool_se the pooled standard error value.
  • t quantile of the t-distribution (to calculate confidence intervals).
  • r the relative increase in variance due to missing data.
  • dfcom complete data degrees of freedom.
  • v_adj adjusted degrees of freedom (according to Barnard and Rubin 1999)

Details

The t-value is the quantile value of the t-distribution that can be used to calculate confidence intervals according to estpooled+/t1α/2sepooledest_{pooled} +/- t_{1-\alpha/2} * se_{pooled}. When statistic is TRUE the test statistic is calculated as statistic=estpooled/sepooledstatistic = est{pooled}/se{pooled}. The p-value is than derived using the t-distribution and adjusted degrees of freedom.

Examples

est <- c(0.4, 0.6, 0.8) se <- c(0.02, 0.05, 0.03) res <- pool_scalar_RR(est, se, dfcom=500) res

Author(s)

Martijn Heymans, 2021

  • Maintainer: Martijn Heymans
  • License: GPL (>= 2)
  • Last published: 2022-10-02