Positive Predictive Value
Measure to compare true observed labels with predicted labels in binary classification tasks.
The Positive Predictive Value is defined as
Also know as "precision".
This measure is undefined if TP + FP = 0.
The score function calls mlr3measures::precision()
from package list("mlr3measures").
If the measure is undefined for the input, NaN
is returned. This can be customized by setting the field na_value
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr()
:
mlr_measures$get("classif.precision")
msr("classif.precision")
Empty ParamSet
"binary"
FALSE
response
Dictionary of Measures : mlr_measures
as.data.table(mlr_measures)
for a complete table of all (also dynamically created) Measure implementations.
Other classification measures: mlr_measures_classif.acc
, mlr_measures_classif.auc
, mlr_measures_classif.bacc
, mlr_measures_classif.bbrier
, mlr_measures_classif.ce
, mlr_measures_classif.costs
, mlr_measures_classif.dor
, mlr_measures_classif.fbeta
, mlr_measures_classif.fdr
, mlr_measures_classif.fn
, mlr_measures_classif.fnr
, mlr_measures_classif.fomr
, mlr_measures_classif.fp
, mlr_measures_classif.fpr
, mlr_measures_classif.logloss
, mlr_measures_classif.mauc_au1p
, mlr_measures_classif.mauc_au1u
, mlr_measures_classif.mauc_aunp
, mlr_measures_classif.mauc_aunu
, mlr_measures_classif.mauc_mu
, mlr_measures_classif.mbrier
, mlr_measures_classif.mcc
, mlr_measures_classif.npv
, mlr_measures_classif.ppv
, mlr_measures_classif.prauc
, mlr_measures_classif.recall
, mlr_measures_classif.sensitivity
, mlr_measures_classif.specificity
, mlr_measures_classif.tn
, mlr_measures_classif.tnr
, mlr_measures_classif.tp
, mlr_measures_classif.tpr
Other binary classification measures: mlr_measures_classif.auc
, mlr_measures_classif.bbrier
, mlr_measures_classif.dor
, mlr_measures_classif.fbeta
, mlr_measures_classif.fdr
, mlr_measures_classif.fn
, mlr_measures_classif.fnr
, mlr_measures_classif.fomr
, mlr_measures_classif.fp
, mlr_measures_classif.fpr
, mlr_measures_classif.npv
, mlr_measures_classif.ppv
, mlr_measures_classif.prauc
, mlr_measures_classif.recall
, mlr_measures_classif.sensitivity
, mlr_measures_classif.specificity
, mlr_measures_classif.tn
, mlr_measures_classif.tnr
, mlr_measures_classif.tp
, mlr_measures_classif.tpr
Useful links