mlr30.21.0 package

Machine Learning in R - Next Generation

as_benchmark_result

Convert to BenchmarkResult

as_data_backend

Create a Data Backend

as_learner

Convert to a Learner

as_measure

Convert to a Measure

as_prediction_classif

Convert to a Classification Prediction

as_prediction_data

PredictionData

as_prediction_regr

Convert to a Regression Prediction

as_prediction

Convert to a Prediction

as_resample_result

Convert to ResampleResult

as_resampling

Convert to a Resampling

as_result_data

Convert to ResultData

as_task_classif

Convert to a Classification Task

as_task_regr

Convert to a Regression Task

as_task_unsupervised

Convert to an Unsupervised Task

as_task

Convert to a Task

auto_convert

Column Auto-Converter

benchmark_grid

Generate a Benchmark Grid Design

benchmark

Benchmark Multiple Learners on Multiple Tasks

BenchmarkResult

Container for Benchmarking Results

col_info

Column Information for Backend

convert_task

Convert a Task from One Type to Another

DataBackend

DataBackend

DataBackendDataTable

DataBackend for data.table

DataBackendMatrix

DataBackend for Matrix

default_fallback

Create a Fallback Learner

default_measures

Get the Default Measure

deprecated_binding

Create an Active Binding that Generates a Deprecation Warning

HotstartStack

Stack for Hot Start Learners

install_pkgs

Install (Missing) Packages

Learner

Learner Class

LearnerClassif

Classification Learner

LearnerRegr

Regression Learner

marshaling

(Un)marshal a Learner

Measure

Measure Class

MeasureClassif

Classification Measure

MeasureRegr

Regression Measure

MeasureSimilarity

Similarity Measure

mlr_assertions

Assertion for mlr3 Objects

mlr_learners_classif.debug

Classification Learner for Debugging

mlr_learners_classif.featureless

Featureless Classification Learner

mlr_learners_classif.rpart

Classification Tree Learner

mlr_learners_regr.debug

Regression Learner for Debugging

mlr_learners_regr.featureless

Featureless Regression Learner

mlr_learners_regr.rpart

Regression Tree Learner

mlr_learners

Dictionary of Learners

mlr_measures_aic

Akaike Information Criterion Measure

mlr_measures_bic

Bayesian Information Criterion Measure

mlr_measures_classif.acc

Classification Accuracy

mlr_measures_classif.auc

Area Under the ROC Curve

mlr_measures_classif.bacc

Balanced Accuracy

mlr_measures_classif.bbrier

Binary Brier Score

mlr_measures_classif.ce

Classification Error

mlr_measures_classif.costs

Cost-sensitive Classification Measure

mlr_measures_classif.dor

Diagnostic Odds Ratio

mlr_measures_classif.fbeta

F-beta Score

mlr_measures_classif.fdr

False Discovery Rate

mlr_measures_classif.fn

False Negatives

mlr_measures_classif.fnr

False Negative Rate

mlr_measures_classif.fomr

False Omission Rate

mlr_measures_classif.fp

False Positives

mlr_measures_classif.fpr

False Positive Rate

mlr_measures_classif.logloss

Log Loss

mlr_measures_classif.mauc_au1p

Multiclass AUC Scores

mlr_measures_classif.mauc_au1u

Multiclass AUC Scores

mlr_measures_classif.mauc_aunp

Multiclass AUC Scores

mlr_measures_classif.mauc_aunu

Multiclass AUC Scores

mlr_measures_classif.mauc_mu

Multiclass AUC Scores

mlr_measures_classif.mbrier

Multiclass Brier Score

mlr_measures_classif.mcc

Matthews Correlation Coefficient

mlr_measures_classif.npv

Negative Predictive Value

mlr_measures_classif.ppv

Positive Predictive Value

mlr_measures_classif.prauc

Area Under the Precision-Recall Curve

mlr_measures_classif.precision

Positive Predictive Value

mlr_measures_classif.recall

True Positive Rate

mlr_measures_classif.sensitivity

True Positive Rate

mlr_measures_classif.specificity

True Negative Rate

mlr_measures_classif.tn

True Negatives

mlr_measures_classif.tnr

True Negative Rate

mlr_measures_classif.tp

True Positives

mlr_measures_classif.tpr

True Positive Rate

mlr_measures_debug_classif

Debug Measure for Classification

mlr_measures_elapsed_time

Elapsed Time Measure

mlr_measures_internal_valid_score

Measure Internal Validation Score

mlr_measures_oob_error

Out-of-bag Error Measure

mlr_measures_regr.bias

Bias

mlr_measures_regr.ktau

Kendall's tau

mlr_measures_regr.mae

Mean Absolute Error

mlr_measures_regr.mape

Mean Absolute Percent Error

mlr_measures_regr.maxae

Max Absolute Error

mlr_measures_regr.medae

Median Absolute Error

mlr_measures_regr.medse

Median Squared Error

mlr_measures_regr.mse

Mean Squared Error

mlr_measures_regr.msle

Mean Squared Log Error

mlr_measures_regr.pbias

Percent Bias

mlr_measures_regr.pinball

Average Pinball Loss

mlr_measures_regr.rae

Relative Absolute Error

mlr_measures_regr.rmse

Root Mean Squared Error

mlr_measures_regr.rmsle

Root Mean Squared Log Error

mlr_measures_regr.rrse

Root Relative Squared Error

mlr_measures_regr.rse

Relative Squared Error

mlr_measures_regr.rsq

R-Squared

mlr_measures_regr.sae

Sum of Absolute Errors

mlr_measures_regr.smape

Symmetric Mean Absolute Percent Error

mlr_measures_regr.srho

Spearman's rho

mlr_measures_regr.sse

Sum of Squared Errors

mlr_measures_selected_features

Selected Features Measure

mlr_measures_sim.jaccard

Jaccard Similarity Index

mlr_measures_sim.phi

Phi Coefficient Similarity

mlr_measures

Dictionary of Performance Measures

mlr_reflections

Reflections for mlr3

mlr_resamplings_bootstrap

Bootstrap Resampling

mlr_resamplings_custom_cv

Custom Cross-Validation

mlr_resamplings_custom

Custom Resampling

mlr_resamplings_cv

Cross-Validation Resampling

mlr_resamplings_holdout

Holdout Resampling

mlr_resamplings_insample

Insample Resampling

mlr_resamplings_loo

Leave-One-Out Cross-Validation

mlr_resamplings_repeated_cv

Repeated Cross-Validation Resampling

mlr_resamplings_subsampling

Subsampling Resampling

mlr_resamplings

Dictionary of Resampling Strategies

mlr_sugar

Syntactic Sugar for Object Construction

mlr_task_generators_2dnormals

2D Normals Classification Task Generator

mlr_task_generators_cassini

Cassini Classification Task Generator

mlr_task_generators_circle

Circle Classification Task Generator

mlr_task_generators_friedman1

Friedman1 Regression Task Generator

mlr_task_generators_moons

Moons Classification Task Generator

mlr_task_generators_simplex

Simplex Classification Task Generator

mlr_task_generators_smiley

Smiley Classification Task Generator

mlr_task_generators_spirals

Spiral Classification Task Generator

mlr_task_generators_xor

XOR Classification Task Generator

mlr_task_generators

Dictionary of Task Generators

mlr_tasks_boston_housing

Boston Housing Regression Task

mlr_tasks_breast_cancer

Wisconsin Breast Cancer Classification Task

mlr_tasks_german_credit

German Credit Classification Task

mlr_tasks_iris

Iris Classification Task

mlr_tasks_mtcars

Motor Trend Regression Task

mlr_tasks_penguins

Palmer Penguins Data Set

mlr_tasks_pima

Pima Indian Diabetes Classification Task

mlr_tasks_sonar

Sonar Classification Task

mlr_tasks_spam

Spam Classification Task

mlr_tasks_wine

Wine Classification Task

mlr_tasks_zoo

Zoo Classification Task

mlr_tasks

Dictionary of Tasks

mlr_test_helpers

Documentation of mlr3 test helpers

mlr3-package

mlr3: Machine Learning in R - Next Generation

partition

Manually Partition into Training, Test and Validation Set

predict.Learner

Predict Method for Learners

Prediction

Abstract Prediction Object

PredictionClassif

Prediction Object for Classification

PredictionData

Convert to PredictionData

PredictionRegr

Prediction Object for Regression

reexports

Objects exported from other packages

resample

Resample a Learner on a Task

ResampleResult

Container for Results of resample()

Resampling

Resampling Class

ResultData

ResultData

set_threads

Set the Number of Threads

task_check_col_roles

Check Column Roles

Task

Task Class

TaskClassif

Classification Task

TaskGenerator

TaskGenerator Class

TaskRegr

Regression Task

TaskSupervised

Supervised Task

TaskUnsupervised

Unsupervised Task

warn_deprecated

Give a Warning about a Deprecated Function, Argument, or Active Bindin...

Efficient, object-oriented programming on the building blocks of machine learning. Provides 'R6' objects for tasks, learners, resamplings, and measures. The package is geared towards scalability and larger datasets by supporting parallelization and out-of-memory data-backends like databases. While 'mlr3' focuses on the core computational operations, add-on packages provide additional functionality.

  • Maintainer: Marc Becker
  • License: LGPL-3
  • Last published: 2024-09-24