mlr_resamplings_subsampling function

Subsampling Resampling

Subsampling Resampling

Splits data repeats (default: 30) times into training and test set with a ratio of ratio (default: 2/3) observations going into the training set.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("subsampling")
rsmp("subsampling")

Parameters

  • repeats (integer(1))

    Number of repetitions.

  • ratio (numeric(1))

    Ratio of observations to put into the training set.

Examples

# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling subsampling = rsmp("subsampling", repeats = 2, ratio = 0.5) subsampling$instantiate(task) # Individual sets: subsampling$train_set(1) subsampling$test_set(1) # Disjunct sets: intersect(subsampling$train_set(1), subsampling$test_set(1)) # Internal storage: subsampling$instance$train # list of index vectors

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). Resampling Methods for Meta-Model Validation with Recommendations forEvolutionary Computation.

Evolutionary Computation, 20 (2), 249--275. tools:::Rd_expr_doi("10.1162/evco_a_00069") .

See Also

Other Resampling: Resampling, mlr_resamplings, mlr_resamplings_bootstrap, mlr_resamplings_custom, mlr_resamplings_custom_cv, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv

Super class

mlr3::Resampling -> ResamplingSubsampling

Active bindings

  • iters: (integer(1))

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

ResamplingSubsampling$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingSubsampling$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.