Holdout Resampling
Splits data into a training set and a test set. Parameter ratio
determines the ratio of observation going into the training set (default: 2/3).
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("holdout")
rsmp("holdout")
ratio
(numeric(1)
)
Ratio of observations to put into the training set.
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling holdout = rsmp("holdout", ratio = 0.5) holdout$instantiate(task) # Individual sets: holdout$train_set(1) holdout$test_set(1) # Disjunct sets: intersect(holdout$train_set(1), holdout$test_set(1)) # Internal storage: holdout$instance # simple list
Bischl B, Mersmann O, Trautmann H, Weihs C (2012). Resampling Methods for Meta-Model Validation with Recommendations forEvolutionary Computation.
Evolutionary Computation, 20 (2), 249--275. tools:::Rd_expr_doi("10.1162/evco_a_00069") .
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).Other Resampling: Resampling
, mlr_resamplings
, mlr_resamplings_bootstrap
, mlr_resamplings_custom
, mlr_resamplings_custom_cv
, mlr_resamplings_cv
, mlr_resamplings_insample
, mlr_resamplings_loo
, mlr_resamplings_repeated_cv
, mlr_resamplings_subsampling
mlr3::Resampling
-> ResamplingHoldout
iters
: (integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the `param_set`.
new()
Creates a new instance of this R6 class.
ResamplingHoldout$new()
clone()
The objects of this class are cloneable with this method.
ResamplingHoldout$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links