mlr_resamplings_bootstrap function

Bootstrap Resampling

Bootstrap Resampling

Splits data into bootstrap samples (sampling with replacement). Hyperparameters are the number of bootstrap iterations (repeats, default: 30) and the ratio of observations to draw per iteration (ratio, default: 1) for the training set.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("bootstrap")
rsmp("bootstrap")

Parameters

  • repeats (integer(1))

    Number of repetitions.

  • ratio (numeric(1))

    Ratio of observations to put into the training set.

Examples

# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling bootstrap = rsmp("bootstrap", repeats = 2, ratio = 1) bootstrap$instantiate(task) # Individual sets: bootstrap$train_set(1) bootstrap$test_set(1) # Disjunct sets: intersect(bootstrap$train_set(1), bootstrap$test_set(1)) # Internal storage: bootstrap$instance$M # Matrix of counts

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). Resampling Methods for Meta-Model Validation with Recommendations forEvolutionary Computation.

Evolutionary Computation, 20 (2), 249--275. tools:::Rd_expr_doi("10.1162/evco_a_00069") .

See Also

Other Resampling: Resampling, mlr_resamplings, mlr_resamplings_custom, mlr_resamplings_custom_cv, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling

Super class

mlr3::Resampling -> ResamplingBootstrap

Active bindings

  • iters: (integer(1))

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

ResamplingBootstrap$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingBootstrap$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.