Custom Resampling
Splits data into training and test sets using manually provided indices.
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp()
:
mlr_resamplings$get("custom")
rsmp("custom")
# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling custom = rsmp("custom") train_sets = list(1:5, 5:10) test_sets = list(5:10, 1:5) custom$instantiate(task, train_sets, test_sets) custom$train_set(1) custom$test_set(1)
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).Other Resampling: Resampling
, mlr_resamplings
, mlr_resamplings_bootstrap
, mlr_resamplings_custom_cv
, mlr_resamplings_cv
, mlr_resamplings_holdout
, mlr_resamplings_insample
, mlr_resamplings_loo
, mlr_resamplings_repeated_cv
, mlr_resamplings_subsampling
mlr3::Resampling
-> ResamplingCustom
iters
: (integer(1)
)
Returns the number of resampling iterations, depending on the values stored in the `param_set`.
new()
Creates a new instance of this R6 class.
ResamplingCustom$new()
instantiate()
Instantiate this Resampling with custom splits into training and test set.
ResamplingCustom$instantiate(task, train_sets, test_sets)
task
: Task
Mainly used to check if `train_sets` and `test_sets` are feasible.
train_sets
: (list of integer()
)
List with row ids for training, one list element per iteration. Must have the same length as `test_sets`.
test_sets
: (list of integer()
)
List with row ids for testing, one list element per iteration. Must have the same length as `train_sets`.
clone()
The objects of this class are cloneable with this method.
ResamplingCustom$clone(deep = FALSE)
deep
: Whether to make a deep clone.
Useful links
Downloads (last 30 days):