mlr_sugar function

Syntactic Sugar for Object Construction

Syntactic Sugar for Object Construction

Functions to retrieve objects, set hyperparameters and assign to fields in one go. Relies on mlr3misc::dictionary_sugar_get() to extract objects from the respective mlr3misc::Dictionary :

  • tsk() for a Task from mlr_tasks .
  • tsks() for a list of Task s from mlr_tasks .
  • tgen() for a TaskGenerator from mlr_task_generators .
  • tgens() for a list of TaskGenerator s from mlr_task_generators .
  • lrn() for a Learner from mlr_learners .
  • lrns() for a list of Learner s from mlr_learners .
  • rsmp() for a Resampling from mlr_resamplings .
  • rsmps() for a list of Resampling s from mlr_resamplings .
  • msr() for a Measure from mlr_measures .
  • msrs() for a list of Measure s from mlr_measures .

Helper function to configure the $validate field(s) of a Learner.

This is especially useful for learners such as AutoTuner of list("mlr3tuning") or GraphLearner of list("mlr3pipelines") which have multiple levels of $validate fields., where the $validate fields need to be configured on multiple levels.

tsk(.key, ...) tsks(.keys, ...) tgen(.key, ...) tgens(.keys, ...) lrn(.key, ...) lrns(.keys, ...) rsmp(.key, ...) rsmps(.keys, ...) msr(.key, ...) msrs(.keys, ...) set_validate(learner, validate, ...)

Arguments

  • .key: (character(1))

    Key passed to the respective dictionary to retrieve the object.

  • ...: (any)

    Additional arguments.

  • .keys: (character())

    Keys passed to the respective dictionary to retrieve multiple objects.

  • learner: (any)

    The learner.

  • validate: (numeric(1), "predefined", "test", or NULL)

    Which validation set to use.

Returns

R6::R6Class object of the respective type, or a list of R6::R6Class objects for the plural versions.

Modified Learner

Examples

# penguins task with new id tsk("penguins", id = "penguins2") # classification tree with different hyperparameters # and predict type set to predict probabilities lrn("classif.rpart", cp = 0.1, predict_type = "prob") # multiple learners with predict type 'prob' lrns(c("classif.featureless", "classif.rpart"), predict_type = "prob") learner = lrn("classif.debug") set_validate(learner, 0.2) learner$validate