mlr_resamplings_cv function

Cross-Validation Resampling

Cross-Validation Resampling

Splits data using a folds-folds (default: 10 folds) cross-validation.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("cv")
rsmp("cv")

Parameters

  • folds (integer(1))

    Number of folds.

Examples

# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling cv = rsmp("cv", folds = 3) cv$instantiate(task) # Individual sets: cv$train_set(1) cv$test_set(1) # Disjunct sets: intersect(cv$train_set(1), cv$test_set(1)) # Internal storage: cv$instance # table

References

Bischl B, Mersmann O, Trautmann H, Weihs C (2012). Resampling Methods for Meta-Model Validation with Recommendations forEvolutionary Computation.

Evolutionary Computation, 20 (2), 249--275. tools:::Rd_expr_doi("10.1162/evco_a_00069") .

See Also

Other Resampling: Resampling, mlr_resamplings, mlr_resamplings_bootstrap, mlr_resamplings_custom, mlr_resamplings_custom_cv, mlr_resamplings_holdout, mlr_resamplings_insample, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling

Super class

mlr3::Resampling -> ResamplingCV

Active bindings

  • iters: (integer(1))

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

ResamplingCV$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingCV$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.