mlr_measures_regr.pinball function

Average Pinball Loss

Average Pinball Loss

Measure to compare true observed response with predicted response in regression tasks.

Details

The pinball loss for quantile regression is defined as

Average Pinball Loss=1ni=1nwi{q(tiri)if tiri(1q)(riti)if ti<ri \text{Average Pinball Loss} = \frac{1}{n} \sum_{i=1}^{n} w_{i}\begin{cases}q \cdot (t_i - r_i) & \text{if } t_i \geq r_i \\(1 - q) \cdot (r_i - t_i) & \text{if } t_i < r_i\end{cases}

where qq is the quantile and wiw_i are normalized sample weights.

Note

The score function calls mlr3measures::pinball() from package list("mlr3measures").

If the measure is undefined for the input, NaN is returned. This can be customized by setting the field na_value.

Dictionary

This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():

mlr_measures$get("regr.pinball")
msr("regr.pinball")

Parameters

Empty ParamSet

Meta Information

  • Type: "regr"
  • Range: (Inf,Inf)(-Inf, Inf)
  • Minimize: TRUE
  • Required prediction: response

See Also

Dictionary of Measures : mlr_measures

as.data.table(mlr_measures) for a complete table of all (also dynamically created) Measure implementations.

Other regression measures: mlr_measures_regr.bias, mlr_measures_regr.ktau, mlr_measures_regr.mae, mlr_measures_regr.mape, mlr_measures_regr.maxae, mlr_measures_regr.medae, mlr_measures_regr.medse, mlr_measures_regr.mse, mlr_measures_regr.msle, mlr_measures_regr.pbias, mlr_measures_regr.rae, mlr_measures_regr.rmse, mlr_measures_regr.rmsle, mlr_measures_regr.rrse, mlr_measures_regr.rse, mlr_measures_regr.sae, mlr_measures_regr.smape, mlr_measures_regr.srho, mlr_measures_regr.sse