mlr_resamplings_insample function

Insample Resampling

Insample Resampling

Uses all observations as training and as test set.

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("insample")
rsmp("insample")

Examples

# Create a task with 10 observations task = tsk("penguins") task$filter(1:10) # Instantiate Resampling insample = rsmp("insample") insample$instantiate(task) # Train set equal to test set: setequal(insample$train_set(1), insample$test_set(1)) # Internal storage: insample$instance # just row ids

See Also

Other Resampling: Resampling, mlr_resamplings, mlr_resamplings_bootstrap, mlr_resamplings_custom, mlr_resamplings_custom_cv, mlr_resamplings_cv, mlr_resamplings_holdout, mlr_resamplings_loo, mlr_resamplings_repeated_cv, mlr_resamplings_subsampling

Super class

mlr3::Resampling -> ResamplingInsample

Active bindings

  • iters: (integer(1))

     Returns the number of resampling iterations, depending on the values stored in the `param_set`.
    

Methods

Public methods

Method new()

Creates a new instance of this R6 class.

Usage

ResamplingInsample$new()

Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingInsample$clone(deep = FALSE)

Arguments

  • deep: Whether to make a deep clone.