Plot influence diagram from a GrangerTest object
Arrows show causality (influencing) direction.
plot_influence_diagram(obj, splicing_df, two_arrows = TRUE, lev_sig = 0.05)
obj
: GrangerTest objectsplicing_df
: Splicing data.frame objecttwo_arrows
: plot influence arrows both ways? (Default is TRUE).lev_sig
: significance levelggplot object
By default two_arrows
is TRUE and an influencing arrow is drawn for each significant p-value. If two_arrows
is FALSE and one of the p-values is signficant then -log10(p_value) difference is plotted i.e
r1 <- get_sample_recording() fv_list <- get_filtered_views(r1, data_points = "Nose", n = 41, p = 3) jv_sub <- get_joined_view(fv_list) splicing_df <- splice_time(jv_sub, win_size = 3, step_size = 0.5) sv <- get_spliced_view(jv_sub, splicing_df) g <- granger_test(sv, "Nose_x_Central_Sitar", "Nose_x_Central_Tabla", lag = 3/25) plot_influence_diagram(g, splicing_df) plot_influence_diagram(g, splicing_df, two_arrows = TRUE) d1 <- get_duration_annotation_data(r1) plot_influence_diagram(g, splicing_df) + autolayer(d1, expr = (Tier == "Influence S>T" | Tier == "Influence T>S") & Out <= 60, fill_col = "Tier")
Other Granger Causality: autoplot.GrangerTime()
, get_granger_interactions()
, granger_test()
, map_to_granger_test()
, ms_condgrangertest()
, ms_grangertest1()
, ms_grangertest2()
, plot.GrangerInteraction()
Useful links