Composite Loss Value for GLM
Compute composite loss value
loss3(y, mu, theta, weights, cfun, family, s, delta)
y
: response variable values, 0/1 if family=2
, or binomialmu
: response prediction of y
. If mu
is linear predictor, use function loss2
insteadtheta
: scale parameter for family=4
, negative binomialweights
: observation weights, same length as y
cfun
: integer from 1-8, concave function as in irglm_fit
family
: integer 2, 3 or 4, convex function binomial, Poisson or negative binomial, respectivelys
: tuning parameter of cfun
. s > 0
and can be equal to 0 for cfun="tcave"
.delta
: a small positive number provided by user only if cfun="gcave"
and 0 < s <1
Weighted loss values
For large s
values, the loss can be 0 with cfun=2,3,4
, or "acave", "bcave", "ccave".
loss2
irglm
irglmreg
loss2_irsvm
Zhu Wang (2024) Unified Robust Estimation, Australian & New Zealand Journal of Statistics. 66(1):77-102.
Zhu Wang zwang145@uthsc.edu