Combine multiple data sources into one network
Multiple data sources created using set_ipd()
, set_agd_arm()
, or set_agd_contrast()
can be combined into a single network for analysis.
combine_network(..., trt_ref)
...
: multiple data sources, as defined using the set_*
functionstrt_ref
: reference treatment for the entire network, as a string (or coerced as such) referring to the levels of the treatment factor variableAn object of class nma_data
## Parkinson's - combining contrast- and arm-based data studies <- parkinsons$studyn (parkinsons_arm <- parkinsons[studies %in% 1:3, ]) (parkinsons_contr <- parkinsons[studies %in% 4:7, ]) park_arm_net <- set_agd_arm(parkinsons_arm, study = studyn, trt = trtn, y = y, se = se, sample_size = n) park_contr_net <- set_agd_contrast(parkinsons_contr, study = studyn, trt = trtn, y = diff, se = se_diff, sample_size = n) park_net <- combine_network(park_arm_net, park_contr_net) # Print network details park_net # Plot network plot(park_net, weight_edges = TRUE, weight_nodes = TRUE) ## Plaque Psoriasis - combining IPD and AgD in a network # Set up plaque psoriasis network combining IPD and AgD library(dplyr) pso_ipd <- filter(plaque_psoriasis_ipd, studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3")) pso_agd <- filter(plaque_psoriasis_agd, studyc == "FIXTURE") head(pso_ipd) head(pso_agd) pso_ipd <- pso_ipd %>% mutate(# Variable transformations bsa = bsa / 100, prevsys = as.numeric(prevsys), psa = as.numeric(psa), weight = weight / 10, durnpso = durnpso / 10, # Treatment classes trtclass = case_when(trtn == 1 ~ "Placebo", trtn %in% c(2, 3, 5, 6) ~ "IL blocker", trtn == 4 ~ "TNFa blocker"), # Check complete cases for covariates of interest complete = complete.cases(durnpso, prevsys, bsa, weight, psa) ) pso_agd <- pso_agd %>% mutate( # Variable transformations bsa_mean = bsa_mean / 100, bsa_sd = bsa_sd / 100, prevsys = prevsys / 100, psa = psa / 100, weight_mean = weight_mean / 10, weight_sd = weight_sd / 10, durnpso_mean = durnpso_mean / 10, durnpso_sd = durnpso_sd / 10, # Treatment classes trtclass = case_when(trtn == 1 ~ "Placebo", trtn %in% c(2, 3, 5, 6) ~ "IL blocker", trtn == 4 ~ "TNFa blocker") ) # Exclude small number of individuals with missing covariates pso_ipd <- filter(pso_ipd, complete) pso_net <- combine_network( set_ipd(pso_ipd, study = studyc, trt = trtc, r = pasi75, trt_class = trtclass), set_agd_arm(pso_agd, study = studyc, trt = trtc, r = pasi75_r, n = pasi75_n, trt_class = trtclass) ) # Print network details pso_net # Plot network plot(pso_net, weight_nodes = TRUE, weight_edges = TRUE, show_trt_class = TRUE)
set_ipd()
, set_agd_arm()
, and set_agd_contrast()
for defining different data sources.
print.nma_data()
for the print method displaying details of the network, and plot.nma_data()
for network plots.
Useful links