multinma0.7.2 package

Bayesian Network Meta-Analysis of Individual and Aggregate Data

aa_example_ndmm

Example newly-diagnosed multiple myeloma

aa_example_pso_mlnmr

Example plaque psoriasis ML-NMR

aa_example_smk_fe

Example smoking FE NMA

aa_example_smk_nodesplit

Example smoking node-splitting

aa_example_smk_re

Example smoking RE NMA

aa_example_smk_ume

Example smoking UME NMA

adapt_delta

Target average acceptance probability

add_integration

Add numerical integration points to aggregate data

as.array.stan_nma

Convert samples into arrays, matrices, or data frames

as.stanfit

as.stanfit

Bernoulli

The Bernoulli Distribution

combine_network

Combine multiple data sources into one network

default_values

Set default values

dic

Deviance Information Criterion (DIC)

distr

Specify a general marginal distribution

GammaDist

The Gamma distribution

generalised_t

Generalised Student's t distribution (with location and scale)

geom_km

Kaplan-Meier curves of survival data

get_nodesplits

Direct and indirect evidence

graph_conversion

Convert networks to graph objects

is_network_connected

Check network connectedness

log_t

Log Student's t distribution

logitNormal

The logit Normal distribution

loo

Model comparison using the loo package

make_knots

Knot locations for M-spline baseline hazard models

marginal_effects

Marginal treatment effects

mcmc_array-class

Working with 3D MCMC arrays

mspline

Distribution functions for M-spline baseline hazards

multi

Multinomial outcome data

multinma-package

multinma: A Package for Network Meta-Analysis of Individual and Aggreg...

ndmm

Newly diagnosed multiple myeloma

nma_data-class

The nma_data class

nma_dic-class

The nma_dic class

nma_nodesplit-class

The nma_nodesplit class

nma_prior-class

The nma_prior class

nma_summary-class

The nma_summary class

nma_summary-methods

Methods for nma_summary objects

nma

Network meta-analysis models

nodesplit_summary-class

The nodesplit_summary class

nodesplit_summary-methods

Methods for nodesplit_summary objects

pairs.stan_nma

Matrix of plots for a stan_nma object

plaque_psoriasis

Plaque psoriasis data

plot_integration_error

Plot numerical integration error

plot_prior_posterior

Plot prior vs posterior distribution

plot.nma_data

Network plots

plot.nma_dic

Plots of model fit diagnostics

plot.nma_summary

Plots of summary results

plot.nodesplit_summary

Plots of node-splitting models

posterior_ranks

Treatment rankings and rank probabilities

predict.stan_nma

Predictions of absolute effects from NMA models

print.nma_data

Print nma_data objects

print.nma_dic

Print DIC details

print.nma_nodesplit_df

Print nma_nodesplit_df objects

print.stan_nma

Print stan_nma objects

priors

Prior distributions

random_effects

Random effects structure

reexports

Objects exported from other packages

relative_effects

Relative treatment effects

set_agd_arm

Set up arm-based aggregate data

set_agd_contrast

Set up contrast-based aggregate data

set_agd_surv

Set up aggregate survival data

set_ipd

Set up individual patient data

stan_nma-class

The stan_nma class

summary.nma_nodesplit_df

Summarise the results of node-splitting models

summary.nma_prior

Summary of prior distributions

summary.stan_nma

Posterior summaries from stan_nma objects

theme_multinma

Plot theme for multinma plots

Network meta-analysis and network meta-regression models for aggregate data, individual patient data, and mixtures of both individual and aggregate data using multilevel network meta-regression as described by Phillippo et al. (2020) <doi:10.1111/rssa.12579>. Models are estimated in a Bayesian framework using 'Stan'.

  • Maintainer: David M. Phillippo
  • License: GPL-3
  • Last published: 2024-09-16