3D MCMC arrays (Iterations, Chains, Parameters) are produced by as.array()
methods applied to stan_nma or nma_summary objects.
## S3 method for class 'mcmc_array'summary(object,..., probs = c(0.025,0.25,0.5,0.75,0.975))## S3 method for class 'mcmc_array'print(x,...)## S3 method for class 'mcmc_array'plot(x,...)## S3 method for class 'mcmc_array'names(x)## S3 replacement method for class 'mcmc_array'names(x)<- value
Arguments
...: Further arguments passed to other methods
probs: Numeric vector of quantiles of interest
x, object: A 3D MCMC array of class mcmc_array
value: Character vector of replacement parameter names
Returns
The summary() method returns a nma_summary object, the print()
method returns x invisibly. The names() method returns a character vector of parameter names, and names()<- returns the object with updated parameter names. The plot() method is a shortcut for plot(summary(x), ...), passing all arguments on to plot.nma_summary().
Examples
## Smoking cessation# Run smoking RE NMA example if not already availableif(!exists("smk_fit_RE")) example("example_smk_re", run.donttest =TRUE)# Working with arrays of posterior draws (as mcmc_array objects) is# convenient when transforming parameters# Transforming log odds ratios to odds ratiosLOR_array <- as.array(relative_effects(smk_fit_RE))OR_array <- exp(LOR_array)# mcmc_array objects can be summarised to produce a nma_summary objectsmk_OR_RE <- summary(OR_array)# This can then be printed or plottedsmk_OR_RE
plot(smk_OR_RE, ref_line =1)# Transforming heterogeneity SD to variancetau_array <- as.array(smk_fit_RE, pars ="tau")tausq_array <- tau_array^2# Correct parameter namesnames(tausq_array)<-"tausq"# Summarisesummary(tausq_array)