mcmc_array-class function

Working with 3D MCMC arrays

Working with 3D MCMC arrays

3D MCMC arrays (Iterations, Chains, Parameters) are produced by as.array()

methods applied to stan_nma or nma_summary objects.

## S3 method for class 'mcmc_array' summary(object, ..., probs = c(0.025, 0.25, 0.5, 0.75, 0.975)) ## S3 method for class 'mcmc_array' print(x, ...) ## S3 method for class 'mcmc_array' plot(x, ...) ## S3 method for class 'mcmc_array' names(x) ## S3 replacement method for class 'mcmc_array' names(x) <- value

Arguments

  • ...: Further arguments passed to other methods
  • probs: Numeric vector of quantiles of interest
  • x, object: A 3D MCMC array of class mcmc_array
  • value: Character vector of replacement parameter names

Returns

The summary() method returns a nma_summary object, the print()

method returns x invisibly. The names() method returns a character vector of parameter names, and names()<- returns the object with updated parameter names. The plot() method is a shortcut for plot(summary(x), ...), passing all arguments on to plot.nma_summary().

Examples

## Smoking cessation # Run smoking RE NMA example if not already available if (!exists("smk_fit_RE")) example("example_smk_re", run.donttest = TRUE) # Working with arrays of posterior draws (as mcmc_array objects) is # convenient when transforming parameters # Transforming log odds ratios to odds ratios LOR_array <- as.array(relative_effects(smk_fit_RE)) OR_array <- exp(LOR_array) # mcmc_array objects can be summarised to produce a nma_summary object smk_OR_RE <- summary(OR_array) # This can then be printed or plotted smk_OR_RE plot(smk_OR_RE, ref_line = 1) # Transforming heterogeneity SD to variance tau_array <- as.array(smk_fit_RE, pars = "tau") tausq_array <- tau_array^2 # Correct parameter names names(tausq_array) <- "tausq" # Summarise summary(tausq_array)