pca function

Principal Components Analysis

Principal Components Analysis

Computes a principal components analysis based on the singular value decomposition. methods

## S4 method for signature 'CompositionMatrix' pca( object, center = TRUE, scale = FALSE, rank = NULL, sup_row = NULL, sup_col = NULL, weight_row = NULL, weight_col = NULL ) ## S4 method for signature 'LogRatio' pca( object, center = TRUE, scale = FALSE, rank = NULL, sup_row = NULL, sup_col = NULL, weight_row = NULL, weight_col = NULL )

Arguments

  • object: A CompositionMatrix or LogRatio object.
  • center: A logical scalar: should the variables be shifted to be zero centered?
  • scale: A logical scalar: should the variables be scaled to unit variance?
  • rank: An integer value specifying the maximal number of components to be kept in the results. If NULL (the default), p1p - 1 components will be returned.
  • sup_row: A vector specifying the indices of the supplementary rows.
  • sup_col: A vector specifying the indices of the supplementary columns.
  • weight_row: A numeric vector specifying the active row (individual) weights. If NULL (the default), uniform weights are used. Row weights are internally normalized to sum 1
  • weight_col: A numeric vector specifying the active column (variable) weights. If NULL (the default), uniform weights (1) are used.

Returns

A dimensio::PCA object. See dimensio::pca() for details.

Methods (by class)

  • pca(CompositionMatrix): PCA of centered log-ratio, i.e. log-ratio analysis (LRA).

Examples

## Data from Day et al. 2011 data("kommos", package = "folio") # Coerce to compositional data kommos <- remove_NA(kommos, margin = 1) # Remove cases with missing values coda <- as_composition(kommos, groups = 1) # Use ceramic types for grouping ## Log-Ratio Analysis X <- pca(coda) ## Biplot biplot(X) ## Explore results viz_individuals(X) viz_variables(X)

References

Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51: 375-392. tools:::Rd_expr_doi("10.1111/1467-9876.00275") .

Filzmoser, P., Hron, K. and Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20: 621-632. tools:::Rd_expr_doi("10.1002/env.966") .

See Also

dimensio::pca(), dimensio::biplot(), dimensio::screeplot(), dimensio::viz_individuals(), dimensio::viz_variables()

Author(s)

N. Frerebeau