center: A logical scalar: should the variables be shifted to be zero centered?
scale: A logical scalar: should the variables be scaled to unit variance?
rank: An integer value specifying the maximal number of components to be kept in the results. If NULL (the default), p−1 components will be returned.
sup_row: A vector specifying the indices of the supplementary rows.
sup_col: A vector specifying the indices of the supplementary columns.
weight_row: A numeric vector specifying the active row (individual) weights. If NULL (the default), uniform weights are used. Row weights are internally normalized to sum 1
weight_col: A numeric vector specifying the active column (variable) weights. If NULL (the default), uniform weights (1) are used.
Returns
A dimensio::PCA object. See dimensio::pca() for details.
Methods (by class)
pca(CompositionMatrix): PCA of centered log-ratio, i.e. log-ratio analysis (LRA).
Examples
## Data from Day et al. 2011data("kommos", package ="folio")# Coerce to compositional datakommos <- remove_NA(kommos, margin =1)# Remove cases with missing valuescoda <- as_composition(kommos, groups =1)# Use ceramic types for grouping## Log-Ratio AnalysisX <- pca(coda)## Biplotbiplot(X)## Explore resultsviz_individuals(X)viz_variables(X)
References
Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51: 375-392. tools:::Rd_expr_doi("10.1111/1467-9876.00275") .
Filzmoser, P., Hron, K. and Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20: 621-632. tools:::Rd_expr_doi("10.1002/env.966") .