onlineforecast1.0.2 package

Forecast Modelling for Online Applications

grapes-times-times-grapes

Multiplication of list with y, elementwise

getse

Getting subelement from list.

gof

Simple wrapper for graphics.off()

make_periodic

Make an forecast matrix with a periodic time signal.

make_tday

Make an hour-of-day forecast matrix

nams

Return the column names

one

Create ones for model input intercept

AR

Auto-Regressive (AR) input

as.data.frame.data.list

Convert to data.frame

as.data.list

Convert to data.list class

aslt

Convertion to POSIXlt

bs

Compute base splines of a variable using the R function splines::bs,...

cache_name

Generation of a name for a cache file for the value of a function.

cache_save

Save a cache file (name generated with code_name()

complete_cases

Find complete cases in forecast matrices

ct

Convertion to POSIXct

data.list

Make a data.list

depth

Depth of a list

equals-.data.list

Determine if two data.lists are identical

flattenlist

Flattens list

forecastmodel

Class for forecastmodels

fs

Generation of Fourrier series.

in_range

Selects a period

input_class

Class for forecastmodel inputs

lagdf.character

Lagging which returns a data.frame

lagdf.factor

Lagging which returns a data.frame

lagdf.logical

Lagging which returns a data.frame

lagdf.matrix

Lagging which returns a data.frame

lagdf.numeric

Lagging which returns a data.frame

lagdf

Lagging which returns a data.frame

lagdl

Lagging which returns a data.list

lagvec

Lag by shifting

lapply_cbind

Helper which does lapply and then cbind

lapply_cbind_df

Helper which does lapply, cbind and then as.data.frame

lapply_rbind

Helper which does lapply and then rbind

lapply_rbind_df

Helper which does lapply, rbind and then as.data.frame

lm_fit

Fit an onlineforecast model with lm

lm_optim

Optimize parameters for onlineforecast model fitted with LM

lm_predict

Prediction with an lm forecast model.

long_format

Long format of prediction data.frame

lp

First-order low-pass filtering

lp_vector

First-order low-pass filtering

lp_vector_cpp

Low pass filtering of a vector.

make_input

Make a forecast matrix (as data.frame) from observations.

onlineforecast-package

onlineforecast: Forecast Modelling for Online Applications

pairs.data.list

Generation of pairs plot for a data.list.

par_ts

Set parameters for plot_ts()

pbspline

Wrapper for bspline with periodic=TRUE

persistence

Generate persistence forecasts

plot_ts

Time series plotting

plotly_ts.data.frame

Time series plotting

plotly_ts.data.list

Time series plotting

print.forecastmodel

Print forecast model

print_to_message

Simple function for capturing from the print function and send it in a...

pst

Simple wrapper for paste0().

resample.data.frame

Resampling to equidistant time series

resample

Resampling to equidistant time series

residuals

Calculate the residuals given a forecast matrix and the observations.

rls_fit

Fit an onlineforecast model with Recursive Least Squares (RLS).

rls_optim

Optimize parameters for onlineforecast model fitted with RLS

rls_predict

Prediction with an rls model.

rls_prm

Function for generating the parameters for RLS regression

rls_summary

Print summary of an onlineforecast model fitted with RLS

rls_update

Updates the model fits

rls_update_cpp

Calculating k-step recursive least squares estimates

rmse

Computes the RMSE score.

score

Calculate the score for each horizon.

setpar

Setting par() plotting parameters

stairs

Plotting stairs with time point at end of interval.

state_getval

Get the state value kept in last call.

state_setval

Set a state value to be kept for next the transformation function is c...

step_optim

Forward and backward model selection

subset.data.list

Take a subset of a data.list.

summary.data.list

Summary with checks of the data.list for appropriate form.

summary.rls_fit

Print summary of an onlineforecast model fitted with RLS

A framework for fitting adaptive forecasting models. Provides a way to use forecasts as input to models, e.g. weather forecasts for energy related forecasting. The models can be fitted recursively and can easily be setup for updating parameters when new data arrives. See the included vignettes, the website <https://onlineforecasting.org> and the paper "onlineforecast: An R package for adaptive and recursive forecasting" <https://journal.r-project.org/articles/RJ-2023-031/>.

  • Maintainer: Peder Bacher
  • License: GPL-3
  • Last published: 2023-10-12