pairwiseCI0.1-27 package

Confidence Intervals for Two Sample Comparisons

as.data.frame.pairwiseCI

Coercing pairwiseCI objects to data.frames

as.data.frame.pairwiseMEP

Coerce pairwiseMEP objects to data.frames

MOVERR

MOVER-R method by Donner and Zhou (2012)

np.re

Nonparametric test and confidence interval based on relative effects

Overdispersed.binomial.ratio

Confidence intervals for risk ratios of overdispersed binomial data

pairwiseCI.package

Wrapper functions for two-sample confidence intervals and tests.

pairwiseCI

Wrapper function for two-sample confidence intervals

pairwiseCIInt

Internal functions for pairwiseCI

pairwiseCImethodsCont

Confidence intervals for two sample comparisons of continuous data

pairwiseCImethodsCount

Confidence intervals for two sample comparisons of count data

pairwiseCImethodsProp

Confidence intervals for two sample comparisons of binomial proportion...

pairwiseMEP

Wrapper to compute confidence intervals for multiple endpoints

pairwiseTest

Wrapper to calculate unadjusted p-values for pairwise comparisons

pairwiseTestInt

Internal functions for pairwiseTest

plot.pairwiseCI

Plotting the output of pairwiseCI

plotCI.pairwiseMEP

Plot confidence intervals

print.pairwiseCI

Print function for "pairwiseCI"

print.pairwiseTest

Print function for "pairwiseTest"

print.summary.pairwiseCI

Print function for "summary.pairwiseCI"

print.summary.pairwiseTest

Print function for "summary.pairwiseTest"

profileDG

Construct a (quasi-) likelihood-profile

Prop.test

Wrapper to prop.test(stats)

QBmover

Confidence intervals for ratios of proportions based on the quasibinom...

summary.pairwiseCI

Summary function for pairwiseCI

summary.pairwiseTest

Summary function for "pairwiseTest"

Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.

  • Maintainer: Frank Schaarschmidt
  • License: GPL-2
  • Last published: 2019-03-11