Wrapper functions for two-sample confidence intervals and tests.
Wrapper functions for two-sample confidence intervals and tests.
A collection of wrapper functions for simple evaluation of factorial trials. The function pairwiseCI allows to calculate 2-sample confidence intervals for all-pairs and many-to-one comparisons between levels of a factor. Intervals are NOT adjusted for multiple hypothesis testing per default. The function pairwiseTest allows to calculate p-values of two-sample tests for all-pairs and many-to-one comparisons between levels of a factor. P-values are NOT adjusted for multiple hypothesis testing per default. Both function allow splitting of the data according to additional factors. Intervals can be plotted, summary.pairwiseTest allows to use the p-value adjustments as implemented in p.adjust(stats). Different test and interval methods (parametric, nonparametric, bootstrap for robust estimators of location, binomial proportions) are implemented in a unified user level function.
package
Author(s)
Frank Schaarschmidt and Daniel Gerhard, for the Institute of Biostatistics, Leibniz Universitaet Hannover Maintainer: Frank Schaarschmidt schaarschmidt@biostat.uni-hannover.de
See Also
Multiple comparisons for the differences of means:multcomp
pairwise.t.test(stats)
pairwise.prop.test(stats)
p.adjust(stats)
Examples
# some examples:# In many cases the shown examples might not make sense,# but display how the functions can be used.data(Oats)Oats
# # all pairwise comparisons,# separately for each level of nitro:apc <- pairwiseCI(yield ~ Variety, data=Oats, by="nitro", method="Param.diff")
apc
# Intervals can be plotted:plot(apc)# See ?pairwiseCI or ?pairwiseCImethodsCont# for further options for intervals of 2 samples# of continuous data.# Or a testapcTest <- pairwiseTest(yield ~ Variety, data=Oats, by="nitro", method="t.test")# with holm-adjusted p-values:summary(apcTest, p.adjust.method="holm")# # If only comparisons to one control would be of interest:# many to one comparisons, with variety Marvellous as control,# for each level of nitro separately:m21 <- pairwiseCI(yield ~ Variety, data=Oats, by="nitro", method="Param.diff", control="Marvellous")############################################### # Proportions: another structure of the data is needed.# Currently the data.frame data must contain two columns,# specifying the number of successes and failures on each # unit.# The rooting example:# Calculate confidence intervals for the # difference of proportions between the 3 doses of IBA,# separately for 4 combinations of "Age" and "Position".# Note: we pool over Rep in that way. Whether this makes# sense or not, is decision of the user.data(rooting)rooting
# Confidence intervals for the risk differenceaprootsRD<-pairwiseCI(cbind(root, noroot)~ IBA, data=rooting, by=c("Age","Position"), method="Prop.diff")# See ?pairwiseCIProp for further options to compare proportions# Or a test:aprootsTest<-pairwiseTest(cbind(root, noroot)~ IBA, data=rooting, by=c("Age","Position"), method="Prop.test")aprootsTest
summary(aprootsTest, p.adjust.method="holm")