betaH: A number or a vector of the beta of the hypothesis, e.g. L beta=L betaH. If smallModel is a model object then betaH=0.
details: If larger than 0 some timing details are printed.
eps: A small number.
Details
Notice: It cannot be guaranteed that the results agree with other implementations of the Satterthwaite approach!
Examples
(fm0 <- lmer(Reaction ~(Days|Subject), sleepstudy))(fm1 <- lmer(Reaction ~ Days +(Days|Subject), sleepstudy))(fm2 <- lmer(Reaction ~ Days + I(Days^2)+(Days|Subject), sleepstudy))## Test for no effect of Days in fm1, i.e. test fm0 under fm1SATmodcomp(fm1,"Days")SATmodcomp(fm1,~.-Days)L1 <- cbind(0,1)SATmodcomp(fm1, L1)SATmodcomp(fm1, fm0)anova(fm1, fm0)## Test for no effect of Days and Days-squared in fm2, i.e. test fm0 under fm2SATmodcomp(fm2,"(Days+I(Days^2))")SATmodcomp(fm2,~. - Days - I(Days^2))L2 <- rbind(c(0,1,0), c(0,0,1))SATmodcomp(fm2, L2)SATmodcomp(fm2, fm0)anova(fm2, fm0)## Test for no effect of Days-squared in fm2, i.e. test fm1 under fm2SATmodcomp(fm2,"I(Days^2)")SATmodcomp(fm2,~. - I(Days^2))L3 <- rbind(c(0,0,1))SATmodcomp(fm2, L3)SATmodcomp(fm2, fm1)anova(fm2, fm1)
References
Ulrich Halekoh, Søren Højsgaard (2014)., A Kenward-Roger Approximation and Parametric Bootstrap Methods for Tests in Linear Mixed Models - The R Package pbkrtest., Journal of Statistical Software, 58(10), 1-30., https://www.jstatsoft.org/v59/i09/