Extracts prediction error estimates from peperr objects.
perr(peperrobject, type = c("632p","632","apparent","NoInf","resample","nullmodel"))
Arguments
peperrobject: peperr object obtained by call to function peperr.
type: "632p" for the .632+ prediction error estimate (default), "632" for the .632 prediction error estimate. "apparent", "NoInf", "resample" and "nullmodel" return the apparent error, the no-information error, the mean sample error and the nullmodel fit, see Details.
Returns
If type="632p" or type="632": Prediction error: Matrix, with one row per complexity value.
If type="apparent": Apparent error of the full data set. Matrix: One row per complexity value. In case of survival response, columns correspond to evaluation timepoints, which are given in attribute addattr.
If type="NoInf": No-information error of the full data set, i. e. evaluation in permuted data. Matrix: One row per complexity value. Columns correspond to evaluation timepoints, which are given in attribute addattr.
If type="resample": Matrix. Mean prediction error of resampling test samples, one row per complexity value.
If type="nullmodel": Vector or scalar: Null model prediction error, i.e. of fit without information of covariates. In case of survival response Kaplan-Meier estimate at each time point, if response is binary logistic regression model, else not available.
Details
The .632 and the .632+ prediction error estimates are weighted combinations of the apparent error and bootstrap cross-validation error estimate, for survival data at given time points.
References
Binder, H. and Schumacher, M. (2008) Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Statistical Applications in Genetics and Molecular Biology, 7:1.
Gerds, T. and Schumacher, M. (2007) Efron-type measures of prediction error for survival analysis. Biometrics, 63, 1283--1287.
Schumacher, M. and Binder, H., and Gerds, T. (2007) Assessment of Survival Prediction Models in High-Dimensional Settings. Bioinformatics, 23, 1768-1774.
See Also
peperr, ipec
Examples
## Not run:n <-200p <-100beta <- c(rep(1,10),rep(0,p-10))x <- matrix(rnorm(n*p),n,p)real.time <--(log(runif(n)))/(10*exp(drop(x %*% beta)))cens.time <- rexp(n,rate=1/10)status <- ifelse(real.time <= cens.time,1,0)time <- ifelse(real.time <= cens.time,real.time,cens.time)# Example:# Obtain prediction error estimate fitting a Cox proportional hazards model# using CoxBoost # through 10 bootstrap samples # with fixed complexity 50 and 75# and aggregate using prediction error curvespeperr.object <- peperr(response=Surv(time, status), x=x, fit.fun=fit.CoxBoost, complexity=c(50,75), indices=resample.indices(n=length(time), method="sub632", sample.n=10))# 632+ estimate for both complexity values at each time pointperr(peperr.object)## End(Not run)