bb_pi function

Simple uncalibrated prediction intervals for beta-binomial data

Simple uncalibrated prediction intervals for beta-binomial data

bb_pi() is a helper function that is internally called by beta_bin_pi(). It calculates simple uncalibrated prediction intervals for binary data with overdispersion changing between the clusters (beta-binomial).

bb_pi( newsize, histsize, pi, rho, q = qnorm(1 - 0.05/2), alternative = "both", newdat = NULL, histdat = NULL, algorithm = NULL )

Arguments

  • newsize: number of experimental units in the historical clusters
  • histsize: number of experimental units in the future clusters
  • pi: binomial proportion
  • rho: intra class correlation
  • q: quantile used for interval calculation
  • alternative: either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
  • newdat: additional argument to specify the current data set
  • histdat: additional argument to specify the historical data set
  • algorithm: used to define the algorithm for calibration if called via beta_bin_pi(). This argument is not of interest for the calculation of simple uncalibrated intervals

Returns

bb_pi() returns an object of class c("predint", "betaBinomialPI")

with prediction intervals or limits in the first entry ($prediction).

Details

This function returns a simple uncalibrated prediction interval

[l,u]m=nmπ^±qnmπ^(1π^)[1+(nm1)ρ^]+[nm2π^(1π^)hnh+hnh1hnhnm2π^(1π^)ρ^] [l,u]_m = n^*_m \hat{\pi} \pm q \sqrt{n^*_m \hat{\pi} (1- \hat{\pi}) [1 + (n^*_m -1) \hat{\rho}] +[\frac{n^{*2}_m \hat{\pi} (1- \hat{\pi})}{\sum_h n_h} + \frac{\sum_h n_h -1}{\sum_h n_h} n^{*2}_m \hat{\pi} (1- \hat{\pi}) \hat{\rho}]}

with nmn^*_m as the number of experimental units in the m=1,2,...,Mm=1, 2, ... , M future clusters, π^\hat{\pi} as the estimate for the binomial proportion obtained from the historical data, ρ^\hat{\rho} as the estimate for the intra class correlation and nhn_h as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use beta_bin_pi() for real life applications.

Examples

# Pointwise uncalibrated PI bb_pred <- bb_pi(newsize=c(50), pi=0.3, rho=0.05, histsize=rep(50, 20), q=qnorm(1-0.05/2)) summary(bb_pred)
  • Maintainer: Max Menssen
  • License: GPL (>= 2)
  • Last published: 2024-03-04