predint2.2.1 package

Prediction Intervals

as.data.frame.predint

Store prediction intervals or limits as a data.frame

bb_pi

Simple uncalibrated prediction intervals for beta-binomial data

beta_bin_pi

Prediction intervals for beta-binomial data

bisection

Bisection algorithm for bootstrap calibration of prediction intervals

boot_predint

Bootstrap new data from uncalibrated prediction intervals

lmer_bs

Sampling of bootstrap data from a given random effects model

lmer_pi

Prediction intervals for future observations based on linear random ef...

lmer_pi_futmat

Prediction intervals for future observations based on linear random ef...

lmer_pi_futvec

Prediction intervals for future observations based on linear random ef...

lmer_pi_unstruc

Prediction intervals for future observations based on linear random ef...

nb_pi

Simple uncalibrated prediction intervals for negative-binomial data

neg_bin_pi

Prediction intervals for negative-binomial data

normal_pi

Simple uncalibrated prediction intervals for normal distributed data

pi_rho_est

Estimation of the binomial proportion and the intra class correlation.

plot.predint

Plots of predint objects

print.predint

Print objects of class predint

qb_pi

Simple uncalibrated prediction intervals for quasi-binomial data

qp_pi

Simple uncalibrated prediction intervals for quasi-Poisson data

quasi_bin_pi

Prediction intervals for quasi-binomial data

quasi_pois_pi

Prediction intervals for quasi-Poisson data

rbbinom

Sampling of beta-binomial data

rnbinom

Sampling of negative binomial data

rqbinom

Sampling of overdispersed binomial data with constant overdispersion

rqpois

Sampling of overdispersed Poisson data with constant overdispersion

summary.predint

Summarizing objects of class predint

An implementation of prediction intervals for overdispersed count data, for overdispersed binomial data and for linear random effects models.

  • Maintainer: Max Menssen
  • License: GPL (>= 2)
  • Last published: 2024-03-04