nb_pi function

Simple uncalibrated prediction intervals for negative-binomial data

Simple uncalibrated prediction intervals for negative-binomial data

nb_pi() is a helper function that is internally called by neg_bin_pi(). It calculates simple uncalibrated prediction intervals for negative-binomial data with offsets.

nb_pi( newoffset, histoffset, lambda, kappa, q = qnorm(1 - 0.05/2), alternative = "both", newdat = NULL, histdat = NULL, algorithm = NULL )

Arguments

  • newoffset: number of experimental units in the future clusters
  • histoffset: number of experimental units in the historical clusters
  • lambda: overall Poisson mean
  • kappa: dispersion parameter
  • q: quantile used for interval calculation
  • alternative: either "both", "upper" or "lower". alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
  • newdat: additional argument to specify the current data set
  • histdat: additional argument to specify the historical data set
  • algorithm: used to define the algorithm for calibration if called via quasi_pois_pi(). This argument is not of interest for the calculation of simple uncalibrated intervals

Returns

np_pi returns an object of class c("predint", "negativeBinomialPI").

Details

This function returns a simple uncalibrated prediction interval

[l,u]m=nmλ^±qnmλ^+κ^nˉλ^nˉH+(nmλ^+κ^nm2λ^2) [l,u]_m = n^*_m \hat{\lambda} \pm q \sqrt{n^*_m\frac{\hat{\lambda} + \hat{\kappa} \bar{n} \hat{\lambda}}{\bar{n} H} +(n^*_m \hat{\lambda} + \hat{\kappa} n^{*2}_m \hat{\lambda}^2)}

with nmn^*_m as the number of experimental units in m=1,2,...,Mm=1, 2, ... , M future clusters, λ^\hat{\lambda} as the estimate for the Poisson mean obtained from the historical data, κ^\hat{\kappa} as the estimate for the dispersion parameter, nhn_h as the number of experimental units per historical cluster and nˉ=hnhnh/H\bar{n}=\sum_h^{n_h} n_h / H.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the neg_bin_pi() function for real life applications.

Examples

# Prediction interval nb_pred <- nb_pi(newoffset=3, lambda=3, kappa=0.04, histoffset=1:9, q=qnorm(1-0.05/2)) summary(nb_pred)
  • Maintainer: Max Menssen
  • License: GPL (>= 2)
  • Last published: 2024-03-04