Bootstrap new data from uncalibrated prediction intervals
Bootstrap new data from uncalibrated prediction intervals
boot_predint() is a helper function to bootstrap new data from the simple uncalibrated prediction intervals implemented in predint.
boot_predint(pred_int, nboot)
Arguments
pred_int: object of class c("quasiPoissonPI", "betaBinomialPI", "quasiBinomialPI",negativeBinomialPI)
nboot: number of bootstraps
Returns
boot_predint returns an object of class c("predint", "bootstrap")
which is a list with two entries: One for bootstrapped historical observations and one for bootstrapped future observations.
Details
This function only works for binomial and Poisson type data. For the sampling of new data from random effects models see lmer_bs.
Examples
# Simple quasi-Poisson PItest_pi <- qp_pi(histoffset=c(3,3,3,4,5), newoffset=3, lambda=10, phi=3, q=1.96)# Draw 5 bootstrap samlestest_boot <- boot_predint(pred_int = test_pi, nboot=50)str(test_boot)summary(test_boot)# Please note that the low number of bootstrap samples was chosen in order to# decrease computing time. For valid analysis draw at least 10000 bootstrap samples.