qp_pi function

Simple uncalibrated prediction intervals for quasi-Poisson data

Simple uncalibrated prediction intervals for quasi-Poisson data

qp_pi() is a helper function that is internally called by quasi_pois_pi(). It calculates simple uncalibrated prediction intervals for Poisson data with constant overdispersion (quasi-Poisson assumption).

qp_pi( newoffset, histoffset, lambda, phi, q = qnorm(1 - 0.05/2), alternative = "both", newdat = NULL, histdat = NULL, algorithm = NULL )

Arguments

  • newoffset: number of experimental units in the future clusters
  • histoffset: number of experimental units in the historical clusters
  • lambda: overall Poisson mean
  • phi: dispersion parameter
  • q: quantile used for interval calculation
  • alternative: either "both", "upper" or "lower" alternative specifies, if a prediction interval or an upper or a lower prediction limit should be computed
  • newdat: additional argument to specify the current data set
  • histdat: additional argument to specify the historical data set
  • algorithm: used to define the algorithm for calibration if called via quasi_pois_pi(). This argument is not of interest for the calculation of simple uncalibrated intervals

Returns

qp_pi returns an object of class c("predint", "quasiPoissonPI").

Details

This function returns a simple uncalibrated prediction interval

[l,u]m=nmλ^±qnmϕ^λ^+nm2ϕ^λ^hnh [l,u]_m = n^*_m \hat{\lambda} \pm q \sqrt{n^*_m \hat{\phi} \hat{\lambda} +\frac{n^{*2}_m \hat{\phi} \hat{\lambda}}{\sum_h n_h}}

with nmn^*_m as the number of experimental units in the m=1,2,...,Mm=1, 2, ... , M future clusters, λ^\hat{\lambda} as the estimate for the Poisson mean obtained from the historical data, ϕ^\hat{\phi} as the estimate for the dispersion parameter and nhn_h as the number of experimental units per historical cluster.

The direct application of this uncalibrated prediction interval to real life data is not recommended. Please use the quasi_pois_pi_pi() functions for real life applications.

Examples

# Prediction interval qp_pred <- qp_pi(newoffset=3, lambda=3, phi=3, histoffset=1:9, q=qnorm(1-0.05/2)) summary(qp_pred)
  • Maintainer: Max Menssen
  • License: GPL (>= 2)
  • Last published: 2024-03-04