rnbinom() samples negative-binomial data. The following description of the sampling process is based on the parametrization used by Gsteiger et al. 2013.
rnbinom(n, lambda, kappa, offset =NULL)
Arguments
n: defines the number of clusters (I)
lambda: defines the overall Poisson mean (λ)
kappa: dispersion parameter (κ)
offset: defines the number of experimental units per cluster (ni)
Returns
rnbinom() returns a data.frame with two columns: y as the observations and offset as the number of offsets per observation.
Details
The variance of the negative-binomial distribution is
var(Yi)=niλ(1+κniλ).
Negative-biomial observations can be sampled based on predefined values of κ, λ and ni:
Define the parameters of the gamma distribution as a=κ1 and bi=κniλ1. Then, sample the Poisson means for each cluster
λi∼Gamma(a,bi).
Finally, the observations yi are sampled from the Poisson distribution
yi∼Pois(λi)
Examples
# Sampling of negative-binomial observations# with different offsetsset.seed(123)rnbinom(n=5, lambda=5, kappa=0.13, offset=c(3,3,2,3,2))
References
Gsteiger, S., Neuenschwander, B., Mercier, F. and Schmidli, H. (2013): Using historical control information for the design and analysis of clinical trials with overdispersed count data. Statistics in Medicine, 32: 3609-3622. tools:::Rd_expr_doi("10.1002/sim.5851")