psborrow20.0.4.0 package

Bayesian Dynamic Borrowing Analysis and Simulation

add_covariates

Add Covariates for Model Adjustment

Analysis-class

Analysis Class

as_data_frame

Coerce a psborrow2 object to a data frame

baseline_covariates

Specify Correlated Baseline Covariates

BaselineDataFrame-class

Baseline Data Frame Object

BaselineDataList-class

Baseline Data Frame List

BaselineObject-class

BaselineObject class for data simulation

bernoulli_prior

Legacy function for the bernoulli prior

beta_prior

Legacy function for the beta prior

check_data_matrix_has_columns

Check Data Matrix for Required Columns

check_fixed_external_data

Create a Fixed External Data Object

cont_var

Create continuous covariate

ContinuousOutcome-class

ContinuousOutcome class

covariance_matrix

Create Covariance Matrix

Covariates-class

Covariate Class

create_alpha_string

Create alpha string

create_simulation_obj

Compile MCMC sampler using STAN and create simulation object

create_tau_string

Create tau string

custom_enrollment

Create a DataSimEnrollment Object

cut_off_funs

Cut Off Functions

DataSimCutOff-class

Cut Off Object

DataSimEnrollment-class

Enrollment Object

DataSimEvent-class

Event Time Distribution Object

DataSimFixedExternalData-class

Fixed External Control Data Object

DataSimObject-class

Data Simulation Object Class

enrollment_constant

Constant Enrollment Rates

eval_constraints

Evaluate constraints

exp_surv_dist

Legacy function for the exponential survival distribution

exponential_prior

Legacy function for the exponential prior

gamma_prior

Legacy function for the gamma prior

generate-BaselineObject-method

Generate Data for a BaselineObject

generate-DataSimObject-method

Generate Data for a DataSimObject

generate

Generate Data from Object

get_cmd_stan_models

Get CmdStanModel objects for MCMCSimulationResults

get_data

Get Simulated Data from SimDataList object

get_prior_string_covariates

Get prior string for all covariates

get_quantiles

Get Quantiles of Random Data

get_results

Get results for MCMCSimulationResults objects

get_stan_code

Get method for Stan model

get_vars

Get Variables

half_cauchy_prior

Legacy function for the half-cauchy prior

half_normal_prior

Legacy function for the normal half prior

load_and_interpolate_stan_model

Load and interpolate Stan model

load_stan_file

Load a Stan psborrow2 template

logistic_bin_outcome

Legacy function for binary logistic regression

mcmc_sample

Sample from Stan model

MCMCSimulationResult-class

MCMCSimulationResult Class

normal_prior

Legacy function for the normal prior

PriorBeta-class

PriorBeta Class

PriorCauchy-class

PriorCauchy Class

PriorExponential-class

PriorExponential Class

PriorGamma-class

PriorGamma Class

PriorHalfCauchy-class

PriorHalfCauchy Class

PriorHalfNormal-class

PriorHalfNormal Class

PriorNormal-class

PriorNormal Class

PriorPoisson-class

PriorPoisson Class

psborrow2-package

psborrow2: Bayesian Dynamic Borrowing Analysis and Simulation

rename_draws_covariates

Rename Covariates in draws Object

set_cut_off

Set Clinical Cut Off Rule

set_dropout

Set Drop Out Distribution

set_enrollment

Set Enrollment Rates for Internal and External Trials

set_transformations-BaselineObject-method

Set Transformations in Baseline Objects

set_transformations

Set transformations in BaselineObject objects

show_guide

Show guide for objects with guides

sim_borrowing_list

Input borrowing details for a simulation study

sim_covariate_list

Input covariate adjustment details for a simulation study

sim_covariates_summ

Summarize the number of continuous and binary covariates in a `SimCova...

SimDataList-class

SimDataList Class

SimOutcomeList-class

SimOutcomeList Class

SimSampleSize-class

SimSampleSize Class

SimTreatmentList-class

SimTreatmentList Class

Simulation-class

Simulation Class

SimVar-class

SimVar Class

SimVarBin-class

SimVarBin class

SimVarCont-class

SimVarCont class

TimeToEvent-class

TimeToEvent class

treatment_details

Specify Treatment Details

Treatment-class

Treatment Class

trim_cols

Trim columns from Data Matrix Based on Borrowing object type

trim_rows

Trim Rows from Data Matrix Based on Borrowing object type

uniform_prior

Prior uniform distribution

UniformPrior-class

UniformPrior Class

variable_dictionary

Create Variable Dictionary

weib_ph_surv_dist

Legacy function for the Weibull proportional Hazards survival distribu...

SimCovariates-class

SimCovariates Class

BorrowingNone-class

BorrowingNone class

build_model_string

Build the model string by interpolating the Stan template

c

Combine objects in psborrow2

cauchy_prior

Legacy function for the cauchy prior

check_cmdstanr

Check Stan

prior_beta

Prior beta distribution

prior_cauchy

Prior cauchy distribution

prior_exponential

Prior exponential distribution

prior_gamma

Prior gamma distribution

prior_half_cauchy

Prior half-cauchy distribution

prior_half_normal

Prior half-normal distribution

prior_normal

Prior normal distribution

prior_poisson

Prior poisson distribution

Borrowing-class

Borrowing Class

BorrowingFull-class

BorrowingFull class

BorrowingHierarchicalCommensurate-class

BorrowingHierarchicalCommensurate class

bin_var

Create binary covariate

binary_cutoff

Binary Cut-Off Transformation

BinaryOutcome-class

BinaryOutcome class

borrowing_details

Legacy function for specifying borrowing details

borrowing_full

Full borrowing

borrowing_hierarchical_commensurate

Hierarchical commensurate borrowing

borrowing_none

No borrowing

create_analysis_obj

Compile MCMC sampler using STAN and create analysis object

create_baseline_object

Create Baseline Data Simulation Object

create_data_matrix

Create Data Matrix

create_data_simulation

Data Simulation

create_event_dist

Specify a Time to Event Distribution

outcome_bin_logistic

Bernoulli distribution with logit parametrization

outcome_cont_normal

Normal Outcome Distribution

outcome_surv_exponential

Exponential survival distribution

outcome_surv_pem

Piecewise exponential survival distribution

Prior-class

Prior Class

outcome_surv_weibull_ph

Weibull survival distribution (proportional hazards formulation)

Outcome-class

Outcome class

OutcomeBinaryLogistic-class

OutcomeBinaryLogistic class

OutcomeContinuousNormal-class

OutcomeContinuousNormal class

OutcomeSurvExponential-class

OutcomeSurvExponential Class

PriorBernoulli-class

PriorBernoulli Class

OutcomeSurvPEM-class

OutcomeSurvPEM Class

OutcomeSurvWeibullPH-class

OutcomeSurvWeibullPH Class

plot_pdf

Plot Probability Density Function Values

plot_pmf

Plot Probability Mass Function Values

plot

Plot Prior Objects

poisson_prior

Legacy function for the poisson prior

possible_data_sim_vars

Get All Variable Names in Simulated Data Model Matrix

prior_bernoulli

Prior bernoulli distribution

sim_covariates

Specify covariates for simulation study

sim_data_list

Input generated data for a simulation study

sim_outcome_list

Input outcome details for a simulation study

sim_samplesize

Set simulation study parameters for sample size

sim_treatment_list

Input treatment details for a simulation study

SimBorrowingList-class

SimBorrowingList Class

SimCovariateList-class

SimCovariateList Class

Bayesian dynamic borrowing is an approach to incorporating external data to supplement a randomized, controlled trial analysis in which external data are incorporated in a dynamic way (e.g., based on similarity of outcomes); see Viele 2013 <doi:10.1002/pst.1589> for an overview. This package implements the hierarchical commensurate prior approach to dynamic borrowing as described in Hobbes 2011 <doi:10.1111/j.1541-0420.2011.01564.x>. There are three main functionalities. First, 'psborrow2' provides a user-friendly interface for applying dynamic borrowing on the study results handles the Markov Chain Monte Carlo sampling on behalf of the user. Second, 'psborrow2' provides a simulation framework to compare different borrowing parameters (e.g. full borrowing, no borrowing, dynamic borrowing) and other trial and borrowing characteristics (e.g. sample size, covariates) in a unified way. Third, 'psborrow2' provides a set of functions to generate data for simulation studies, and also allows the user to specify their own data generation process. This package is designed to use the sampling functions from 'cmdstanr' which can be installed from <https://stan-dev.r-universe.dev>.

  • Maintainer: Matt Secrest
  • License: Apache License 2.0
  • Last published: 2025-02-12