Evaluation of the ESTATICS model (Weisskopf (2013) using nonlinear least squares regression and a quasi-likelihood approach assuming a noncentral chi- or a Rician distribuion for the data. The latter should be preferred in case of low SNR (high resolution) data to avoid biased parameter estimates. Quasi-likelihood estimation requires a specification of the scale parameter sigma of the data distribution.
mpmdata: Object of class MPMData as created by readMPMData.
TEScale: scale factor for TE (used for improved numerical stability)
dataScale: scale factor for image intensities (used for improved numerical stability)
method: either "NLR" or "QL". Specifies non-linear regression or quasi-likelihood.
sigma: scale parameter sigma of signal distribution (either a scalar or a 3D array). (only needed in case of method="QL".)
L: effective number of receiver coils (2*L is degrees of freedom of the signal distribution). L=1 for Rician distribution. (only needed in case of method="QL".)
maxR2star: maximum value allowed for the R2star parameter in the ESTATICS model.
varest: For parameter covariance estimation use either residual sum of squares (RSS) or estimate variances for T1, MT (is available) and PD from higest intensity images using function awsLocalSigmafrom package aws.
verbose: logical: Monitor process.
Returns
list with components - modelCoeff: Estimated parameter maps
invCov: map of inverse covariance matrices
rsigma: map of residual standard deviations
isConv: convergence indicator map
isThresh: logical map indicating where R2star==maxR2star.
sdim: image dimension
nFiles: number of images
t1Files: vector of T1 filenames
pdFiles: vector of PD filenames
mtFiles: vector of MT filenames
model: model used (depends on specification of MT files)
maskFile: filename of brain mask
mask: brain mask
sigma: sigma
L: L
TR: TR values
TE: TE values
FA: Flip angles (FA)
TEScale: TEScale
dataScale: dataScale
and class-attribute 'ESTATICSModel'
References
Weiskopf, N.; Suckling, J.; Williams, G.; Correia, M. M.; Inkster, B.; Tait, R.; Ooi, C.; Bullmore, E. T. & Lutti, A. Quantitative multi-parameter mapping of R1, PD(), MT, and R2() at 3T: a multi-center validation. Front Neurosci, Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK., 2013, 7, 95
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 6, Springer, Use R! Series. doi:10.1007/978-3-031-38949-8_6.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data. doi:10.20347/WIAS.DATA.6.