Methods to extract information from objects of class "MPMData", "ESTATICSModel", "sESTATICSModel", "qMaps", "IRdata", "IRfluid" and "IRmixed".
Methods to extract information from objects of class "MPMData", "ESTATICSModel", "sESTATICSModel", "qMaps", "IRdata", "IRfluid" and "IRmixed".
The extract-methods extract and/or compute specified statistics from object of class "MPMData", "ESTATICSModel", "sESTATICSModel", "qMaps", "IRdata", "IRfluid" and "IRmixed". The [-methods can be used to reduce objects of class "MPMData", "ESTATICSModel", "sESTATICSModel", "qMaps", "IRdata", "IRfluid" and "IRmixed" such that they contain a subcube of data and results.
methods
## S3 method for class 'MPMData'extract(x, what,...)## S3 method for class 'ESTATICSModel'extract(x, what,...)## S3 method for class 'sESTATICSModel'extract(x, what,...)## S3 method for class 'qMaps'extract(x, what,...)## S3 method for class 'IRdata'extract(x, what,...)## S3 method for class 'IRfluid'extract(x, what,...)## S3 method for class 'IRmixed'extract(x, what,...)## S3 method for class 'MPMData'x[i, j, k,...]## S3 method for class 'ESTATICSModel'x[i, j, k,...]## S3 method for class 'sESTATICSModel'x[i, j, k,...]## S3 method for class 'qMaps'x[i, j, k,...]## S3 method for class 'IRdata'x[i, j, k, tind,...]## S3 method for class 'IRfluid'x[i, j, k,...]## S3 method for class 'IRmixed'x[i, j, k,...]
Arguments
x: object of class "MPMData", "ESTATICSModel", "sESTATICSModel"
or "qMaps".
what: Character vector of of names of statistics to extract. See Methods Section for details.
i: index vector for first spatial dimension
j: index vector for second spatial dimension
k: index vector for third spatial dimension
tind: index vector for inversion times
...: additional parameters, currently unused.
Methods
class(x) = "ANY": Returns a warning for extract
class(x) = "MPMData": Depending the occurence of names in what a list with the specified components is returned
* ddata: mpm data
* sdim: dimension of image cube
* nFiles: number of images / image files
* t1Files: character - filenames of t1Files
* pdFiles: character - filenames of pdFiles
* mtFiles: character - filenames of mtFiles
* model: Number of the ESTATICS model that can be used
* maskFile: character - filenames of maskFile
* mask: mask
* TR: vector of TR values
* TE: vector of TE values
* FA: vector of FA values
class(x) = "ESTATICSModel": Depending the occurence of names in what a list with the specified components is returned
* modelCoeff: Estimated parameter maps
* invCov: map of inverse covariance matrices
* rsigma: map of residual standard deviations
* isConv: convergence indicator map
* isThresh: logical map indicating where `R2star==maxR2star`
* sdim: image dimension
* nFiles: number of images
* t1Files: vector of T1 filenames
* pdFiles: vector of PD filenames
* mtFiles: vector of MT filenames
* model: model used (depends on specification of MT files)
* maskFile: filename of brain mask
* mask: brain mask
* sigma: standard deviation sigma
* L: effective number of receiver coils L
* TR: TR values
* TE: TE values
* FA: Flip angles (FA)
* TEScale: TEScale
* dataScale: dataScale
class(x) = "sESTATICSModel": Depending the occurence of names in what a list with the specified components is returned
* modelCoeff: Estimated parameter maps
* invCov: map of inverse covariance matrices
* rsigma: map of residual standard deviations
* isConv: convergence indicator map
* bi: Sum of weights map from AWS/PAWS
* smoothPar: smooting parameters used in AWS/PAWS
* smoothedData: smoothed mpmData
* isThresh: logical map indicating where `R2star==maxR2star`
* sdim: image dimension
* nFiles: number of images
* t1Files: vector of T1 filenames
* pdFiles: vector of PD filenames
* mtFiles: vector of MT filenames
* model: model used (depends on specification of MT files)
* maskFile: filename of brain mask
* mask: brain mask
* sigma: sigma
* L: effective number of receiver coils L
* TR: TR values
* TE: TE values
* FA: Flip angles (FA)
* TEScale: TEScale
* dataScale: dataScale
class(x) = "qMaps": Depending the occurence of names in what a list with the specified components is returned
* b1Map: b1Map
* R1: Estimated map of R1
* R2star: Estimated map of R2star
* PD: Estimated map of PD
* MT: Estimated map of delta (if MT-series was used)
* model: Type of ESTATICS model used
* t1Files: filenames T1
* mtFiles: filenames MT
* pdFiles: filenames PD
* mask: brainmask
Returns
A list with components carrying the names of the options specified in argument what.
References
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 7, Springer, Use R! Series. doi:10.1007/978-3-031-38949-8_7.