Adaptive smoothing of ESTATICS parameters and MPM data
Adaptive smoothing of ESTATICS parameters and MPM data
Performs adaptive smoothing of parameter maps in the ESTATICS model and if mpmData is specified these data. Implements both vectorized variants of the Adaptive Weights Smoothing (AWS, Polzehl and Spokoiny (2006)) and patchwise AWS (PAWS, Polzehl et al (2018)) algorithms with weighting schemes determined by the estimated parameter maps and their covariances.
mpmESTATICSModel: Object of class 'ESTATICSModel' as returned from function estimateESTATICS.
mpmData: (optional) Object of class MPMData as created by readMPMData from which the parameter maps were obtained.
kstar: Maximum number of steps.
alpha: specifies the scale parameter for the adaptation criterion. smaller values are more restrictive.
patchsize: Patchsize in PAWS, 0 corresponds to AWS, alternative values are 1 and 2.
mscbw: bandwidth for 3D median smoother used to stabilize the covariance estimates.
wghts: (optional) voxel size if measurments are not isotropic.
verbose: logical - provide information on progress
Returns
list with components - modelCoeff: Estimated parameter maps
invCov: map of inverse covariance matrices
isConv: convergence indicator map
bi: Sum of weights map from AWS/PAWS
smoothPar: smooting parameters used in AWS/PAWS
smoothedData: smoothed mpmData
sdim: image dimension
nFiles: number of images
t1Files: vector of T1 filenames
pdFiles: vector of PD filenames
mtFiles: vector of MT filenames
model: model used (depends on specification of MT files)
maskFile: filename of brain mask
mask: brain mask
sigma: sigma
L: L
TR: TR values
TE: TE values
FA: Flip angles (FA)
TEScale: TEScale
dataScale: dataScale
and class-attribute 'sESTATICSModel'
References
J. Polzehl, V. Spokoiny, Propagation-separation approach for local likelihood estimation, Probab. Theory Related Fields 135 (3), (2006) , pp. 335--362.
J. Polzehl, K. Papafitsorus, K. Tabelow (2018). Patch-wise adaptive weights smoothing. WIAS-Preprint 2520.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging: Modeling and Data Analysis Using R, 2nd Edition, Chapter 6, Springer, Use R! Series. doi:10.1007/978-3-031-38949-8_6.
J. Polzehl and K. Tabelow (2023), Magnetic Resonance Brain Imaging - Modeling and Data Analysis Using R: Code and Data. doi:10.20347/WIAS.DATA.6.