Gröbner basis
Returns a Gröbner basis following Buchberger's algorithm using the lexicographical order.
groebner(G, minimal = TRUE, reduced = TRUE)
G
: a list of qspray
polynomials, the generators of the idealminimal
: Boolean, whether to return a minimal basisreduced
: Boolean, whether to return the reduced basisA Gröbner basis of the ideal generated by G
, given as a list of qspray
polynomials.
library(qspray) f <- qsprayMaker(string = "x^(3) - 2 x^(1,1)") g <- qsprayMaker(string = "x^(2,1) - 2 x^(0,2) + x^(1)") groebner(list(f, g), FALSE, FALSE) # other example x <- qlone(1); y <- qlone(2); z <- qlone(3) f1 <- x^2 + y + z^2 - 1 f2 <- x^2 + y + z - 1 f3 <- x + y^2 + z - 1 groebner(list(f1, f2, f3))
Cox, Little & O'Shea. Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra.
Fourth edition, Springer 2015.