Prediction of QTL-based breeding values from REMIM model
Computes breeding values for each genotyped individual based on multiple QTL models
breeding_values(data, fitted) ## S3 method for class 'qtlpoly.bvalues' plot(x, pheno.col = NULL, ...)
data
: an object of class qtlpoly.data
.fitted
: an object of class qtlpoly.fitted
.x
: an object of class qtlpoly.bvalues
to be plotted.pheno.col
: a numeric vector with the phenotype column numbers to be plotted; if NULL
, all phenotypes from 'data'
will be included....
: currently ignoredAn object of class qtlpoly.bvalues
which is a list of results
for each trait containing the following components:
pheno.col: a phenotype column number.
y.hat: a column matrix of breeding value for each individual.
A ggplot2
histogram with the distribution of breeding values.
# Estimate conditional probabilities using mappoly package library(mappoly) library(qtlpoly) genoprob4x = lapply(maps4x[c(5)], calc_genoprob) #5,7 data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1) # Search for QTL remim.mod = remim(data = data, pheno.col = 1, w.size = 15, sig.fwd = 0.0011493379, sig.bwd = 0.0002284465, d.sint = 1.5, n.clusters = 1) # Fit model fitted.mod = fit_model(data = data, model = remim.mod, probs = "joint", polygenes = "none") # Predict genotypic values y.hat = breeding_values(data = data, fitted = fitted.mod) plot(y.hat)
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. tools:::Rd_expr_doi("10.1534/genetics.120.303080") .
read_data
, fit_model
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Useful links