Null model
Creates a null model (with no QTL) for each trait.
null_model( data, offset.data = NULL, pheno.col = NULL, n.clusters = NULL, plot = NULL, verbose = TRUE ) ## S3 method for class 'qtlpoly.null' print(x, pheno.col = NULL, ...) ## S3 method for class 'qtlpoly.null' print(x, pheno.col = NULL, ...)
data
: an object of class qtlpoly.data
.offset.data
: a data frame with the same dimensions of data$pheno
containing offset variables; if NULL
(default), no offset variables are considered.pheno.col
: a numeric vector with the phenotype columns to be analyzed; if NULL
, all phenotypes from 'data'
will be included.n.clusters
: number of parallel processes to spawn.plot
: a suffix for the file's name containing simple plots of every QTL search round, e.g. "null" (default); if NULL
, no file is produced.verbose
: if TRUE
(default), current progress is shown; if FALSE
, no output is produced.x
: an object of class qtlpoly.null
to be printed....
: currently ignoredAn object of class qtlpoly.null
which contains a list of results
for each trait with the following components:
pheno.col: a phenotype column number.
stat: a vector containing values from score statistics.
pval: a vector containing p-values from score statistics.
qtls: a data frame with information from the mapped QTL (NULL
at this point).
# Estimate conditional probabilities using mappoly package library(mappoly) library(qtlpoly) genoprob4x = lapply(maps4x[c(5)], calc_genoprob) data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1) # Build null models null.mod = null_model(data = data, pheno.col = 1, n.clusters = 1)
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. tools:::Rd_expr_doi("10.1534/genetics.120.303080") .
Qu L, Guennel T, Marshall SL (2013) Linear score tests for variance components in linear mixed models and applications to genetic association studies. Biometrics 69 (4): 883–92.
read_data
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Useful links