Fixed-effect interval mapping (FEIM) model permutations
Stores maximum LOD scores for a number of permutations of given phenotypes.
permutations( data, offset.data = NULL, pheno.col = NULL, n.sim = 1000, probs = c(0.9, 0.95), n.clusters = NULL, seed = 123, verbose = TRUE ) ## S3 method for class 'qtlpoly.perm' print(x, pheno.col = NULL, probs = c(0.9, 0.95), ...) ## S3 method for class 'qtlpoly.perm' plot(x, pheno.col = NULL, probs = c(0.9, 0.95), ...)
data
: an object of class qtlpoly.data
.offset.data
: a subset of the data object to be used in permutation calculations.pheno.col
: a numeric vector with the phenotype columns to be analyzed; if NULL
(default), all phenotypes from 'data'
will be included.n.sim
: a number of simulations, e.g. 1000 (default).probs
: a vector of probability values in [0, 1] representing the quantiles, e.g. c(0.90, 0.95) for the 90% and 95% quantiles.n.clusters
: a number of parallel processes to spawn.seed
: an integer for the set.seed()
function; if NULL
, no reproducible seeds are set.verbose
: if TRUE
(default), current progress is shown; if FALSE
, no output is produced.x
: an object of class qtlpoly.perm
to be printed or plotted....
: currently ignoredAn object of class qtlpoly.perm
which contains a list of results
for each trait with the maximum LOD score per permutation.
LOD score thresholds for given quantiles for each trait.
A ggplot2
histogram with the distribution of ordered maximum LOD scores and thresholds for given quantiles for each trait.
# Estimate conditional probabilities using mappoly package library(mappoly) library(qtlpoly) genoprob4x = lapply(maps4x[c(5)], calc_genoprob) data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1) # Perform permutations perm = permutations(data = data, pheno.col = 1, n.sim = 10, n.clusters = 1)
Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping, Genetics 138: 963-971.
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. tools:::Rd_expr_doi("10.1534/genetics.120.303080") .
feim
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Useful links