QTLs with respective support interval plots
Creates a plot where colored bars represent the support intervals for QTL peaks (black dots).
plot_sint(data, model, pheno.col = NULL, main = NULL, drop = FALSE)
data
: an object of class qtlpoly.data
.model
: an object of class qtlpoly.profile
or qtlpoly.remim
.pheno.col
: a numeric vector with the phenotype column numbers to be plotted; if NULL
, all phenotypes from 'data'
will be included.main
: a character string with the main title; if NULL
, no title will be shown.drop
: if TRUE
, phenotypes with no QTL will be dropped; if FALSE
(default), all phenotypes will be shown.A ggplot2
with QTL bars for each linkage group.
# Estimate conditional probabilities using mappoly package library(mappoly) library(qtlpoly) genoprob4x = lapply(maps4x[c(5)], calc_genoprob) data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1) # Search for QTL remim.mod = remim(data = data, pheno.col = 1, w.size = 15, sig.fwd = 0.0011493379, sig.bwd = 0.0002284465, d.sint = 1.5, n.clusters = 1) # Plot support intervals plot_sint(data = data, model = remim.mod)
Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. tools:::Rd_expr_doi("10.1534/genetics.120.303080") .
read_data
, remim
, profile_qtl
Guilherme da Silva Pereira, gdasilv@ncsu.edu
Useful links