simulate_qtl function

Simulations of multiple QTL

Simulations of multiple QTL

Simulate new phenotypes with a given number of QTL and creates new object with the same structure of class qtlpoly.data from an existing genetic map.

simulate_qtl( data, mu = 0, h2.qtl = c(0.3, 0.2, 0.1), var.error = 1, linked = FALSE, n.sim = 1000, missing = TRUE, w.size = 20, seed = 123, verbose = TRUE ) ## S3 method for class 'qtlpoly.simul' print(x, detailed = FALSE, ...)

Arguments

  • data: an object of class qtlpoly.data.
  • mu: simulated phenotype mean, e.g. 0 (default).
  • h2.qtl: vector with QTL heritabilities, e.g. c(0.3, 0.2, 0.1) for three QTL (default); if NULL, only error is simulated.
  • var.error: simulated error variance, e.g. 1 (default).
  • linked: if TRUE (default), at least two QTL will be linked; if FALSE, QTL will be randomly assigned along the genetic map. Linkage is defined by a genetic distance smaller than the selected w.size.
  • n.sim: number of simulations, e.g. 1000 (default).
  • missing: if TRUE (default), phenotypes are simulated with the same number of missing data observed in data$pheno.
  • w.size: the window size (in centiMorgans) between two (linked) QTL, e.g. 20 (default).
  • seed: integer for the set.seed() function.
  • verbose: if TRUE (default), current progress is shown; if FALSE, no output is produced.
  • x: an object of class qtlpoly.sim to be printed.
  • detailed: if TRUE, detailed information on linkage groups and phenotypes in shown; if FALSE, no details are printed.
  • ...: currently ignored

Returns

An object of class qtlpoly.sim which contains a list of results with the same structure of class qtlpoly.data.

Examples

# Estimate conditional probabilities using mappoly package library(mappoly) library(qtlpoly) genoprob4x = lapply(maps4x[c(5)], calc_genoprob) data = read_data(ploidy = 4, geno.prob = genoprob4x, pheno = pheno4x, step = 1) # Simulate new phenotypes sim.dat = simulate_qtl(data = data, n.sim = 1) sim.dat

References

Pereira GS, Gemenet DC, Mollinari M, Olukolu BA, Wood JC, Mosquera V, Gruneberg WJ, Khan A, Buell CR, Yencho GC, Zeng ZB (2020) Multiple QTL mapping in autopolyploids: a random-effect model approach with application in a hexaploid sweetpotato full-sib population, Genetics 215 (3): 579-595. tools:::Rd_expr_doi("10.1534/genetics.120.303080") .

See Also

read_data

Author(s)

Guilherme da Silva Pereira, gdasilv@ncsu.edu

  • Maintainer: Gabriel de Siqueira Gesteira
  • License: GPL-3
  • Last published: 2024-03-25