gda_kernel_knn_weights function

(For internally use and test only) K-NN Kernel Spatial Weights

(For internally use and test only) K-NN Kernel Spatial Weights

Create a kernel weights by specifying k-nearest neighbors and a kernel method

gda_kernel_knn_weights( geoda_obj, k, kernel_method, adaptive_bandwidth = TRUE, use_kernel_diagonals = FALSE, power = 1, is_inverse = FALSE, is_arc = FALSE, is_mile = TRUE )

Arguments

  • geoda_obj: An instance of geoda
  • k: a positive integer number for k-nearest neighbors
  • kernel_method: a string value, which has to be one of 'triangular', 'uniform', 'epanechnikov', 'quartic', 'gaussian'
  • adaptive_bandwidth: (optional) TRUE (default) or FALSE: TRUE use adaptive bandwidth calculated using distance of k-nearest neithbors, FALSE use max distance of all observation to their k-nearest neighbors
  • use_kernel_diagonals: (optional) FALSE (default) or TRUE, apply kernel on the diagonal of weights matrix
  • power: (optional) The power (or exponent) of a number says how many times to use the number in a multiplication.
  • is_inverse: (optional) FALSE (default) or TRUE, apply inverse on distance value
  • is_arc: (optional) FALSE (default) or TRUE, compute arc distance between two observations
  • is_mile: (optional) TRUE (default) or FALSE, convert distance unit from mile to km.

Returns

An instance of Weight-class

Examples

## Not run: guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda") guerry <- geoda_open(guerry_path) adptkernel_w = gda_kernel_knn_weights(guerry, 6, "uniform") summary(adptkernel_w) ## End(Not run)